Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon

This work reports on a systematic investigation of the influence of optical feedback in InAs/GaAs quantum dot lasers epitaxially grown on silicon. The boundaries associated to the onset of the critical feedback level corresponding to the first Hopf bifurcation are extracted at different bias conditions with respect to the onset of the first excited state transition. Overall, results show that quantum dot lasers directly grown onto silicon are much more resistant to optical feedback than quantum well lasers, mostly resulting from a small linewidth enhancement factor of high-quality quantum dot material. However, results also unveil that the onset of the critical feedback level strongly depends on the excited-to-ground-state ratio, hence a figure of merit showing that a small ratio of the excited-to-ground-state lasing thresholds is not beneficial for maintaining a high degree of stability. This work brings further insights in the understanding of quantum dot laser physics and is useful for designing feedback resistant lasers for isolator-free transmission in metro, access, and data center optical networks, as well as for integrated photonics.

[1]  Jun Ushida,et al.  25-Gbps error-free operation of chip-scale Si-photonics optical transmitter over 70°C with integrated quantum dot laser , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[2]  Mariangela Gioannini,et al.  Ground-state power quenching in two-state lasing quantum dot lasers , 2012 .

[3]  Jesper Mørk,et al.  Chaos in semiconductor lasers with optical feedback: theory and experiment , 1992 .

[4]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001 .

[5]  John E. Bowers,et al.  High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si , 2017 .

[6]  G. Duan,et al.  Passive Chaos Bandwidth Enhancement Under Dual-Optical Feedback with Hybrid III–V/Si DFB Laser , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  C. Liu,et al.  Two-state competition in 1.3 μm multilayer InAs/InGaAs quantum dot lasers , 2009 .

[8]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[9]  Daisuke Inoue,et al.  Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2018, Optics express.

[10]  Jiangbing Du,et al.  Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge , 2017 .

[12]  Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. , 2018, Optics letters.

[13]  Stefan Breuer,et al.  Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback. , 2017, Optics letters.

[14]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[15]  M. Osiński,et al.  Phase-amplitude coupling characteristics in directly modulated quantum dot lasers , 2014 .

[16]  Chennupati Jagadish,et al.  Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition , 2007 .

[17]  B. R. Clarke The effect of reflections on the system performance of intensity modulated laser diodes , 1991 .

[18]  F. Grillot,et al.  Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1.3-$\mu\hbox{m}$ InAs–GaAs Quantum-Dot Lasers , 2008, IEEE Journal of Quantum Electronics.

[19]  Andreas Hoffmann,et al.  Excited states and energy relaxation in stacked InAs/GaAs quantum dots , 1998 .

[20]  Luke F. Lester,et al.  Variation of the feedback sensitivity in a 1.55 μm InAs/InP quantum-dash Fabry–Perot semiconductor laser , 2008 .

[21]  Guillaume Huyet,et al.  Feedback sensitivity of 1.3 µm InAs/GaAs quantum dot lasers , 2003 .

[22]  Marek Osiński,et al.  Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking , 2016, Scientific Reports.

[23]  F. Grillot,et al.  Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor , 2018, Applied Physics Letters.

[24]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[25]  F. Grillot,et al.  Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states , 2016 .

[26]  G. Duan,et al.  Dynamics of Hybrid III-V Silicon Semiconductor Lasers for Integrated Photonics , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Olwen Carroll,et al.  Low-frequency fluctuations in two-state quantum dot lasers. , 2006, Optics letters.

[28]  Tin Komljenovic,et al.  Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2017, Optics express.

[29]  C. Y. Chen,et al.  Dynamics of excited-state InAs/GaAs Fabry-Perot quantum-dot lasers under optical feedback , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[30]  G. Huyet,et al.  The linewidth enhancement factor alpha of quantum dot semiconductor lasers. , 2006, Optics express.

[31]  F. Grillot,et al.  2.5-Gb/s transmission characteristics of 1.3-μm DFB lasers with external optical feedback , 2002, IEEE Photonics Technology Letters.

[32]  E. Schöll,et al.  Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering , 2012 .

[33]  F. Grillot,et al.  Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes. , 2018, Optics express.

[34]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001, Physical review letters.

[35]  Kei May Lau,et al.  Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. , 2017, Optics express.

[36]  F. Grillot,et al.  On the Effects of an Antireflection Coating Impairment on the Sensitivity to Optical Feedback of AR/HR Semiconductor DFB Lasers , 2009, IEEE Journal of Quantum Electronics.

[37]  Kevin A. Williams,et al.  Integrated optical switch matrices for packet data networks , 2016, Microsystems & Nanoengineering.

[38]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[39]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[40]  Krassimir Panajotov,et al.  Switching between ground and excited states by optical feedback in a quantum dot laser diode , 2014 .

[41]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[42]  Luke F. Lester,et al.  Gain Compression and Above-Threshold Linewidth Enhancement Factor in 1 . 3-m InAs – GaAs Quantum-Dot Lasers , 2008 .

[43]  Eckehard Schöll,et al.  Complex Dynamics of semiconductor Quantum dot Lasers subject to delayed Optical Feedback , 2012, Int. J. Bifurc. Chaos.

[44]  A. Yariv,et al.  High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms , 2014, Proceedings of the National Academy of Sciences.

[45]  Atsushi Uchida,et al.  Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization , 1994 .

[46]  M. Harfouche The Coherence Collapse Regime of High-Coherence Si/III-V Lasers and the Use of Swept Frequency Semiconductor Lasers for Full Field 3D Imaging , 2018 .

[47]  F. Grillot,et al.  Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures , 2004, IEEE Journal of Quantum Electronics.

[48]  Yasuhiko Arakawa,et al.  Isolator free optical I/O core transmitter by using quantum dot laser , 2015, 2015 IEEE 12th International Conference on Group IV Photonics (GFP).

[49]  Gadi Eisenstein,et al.  Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers , 2014 .

[50]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.