Solar cell efficiency tables (Version 38)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January, 2011 are reviewed. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[2]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[3]  S. Guha,et al.  High efficiency, multi-junction nc-Si:H based solar cells at high deposition rate , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[4]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[5]  R. J. Schwartz,et al.  Compact spectrum splitting photovoltaic module with high efficiency , 2011 .

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[7]  Peter Engelhart,et al.  R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18% , 2011 .

[8]  Kazuo Higuchi,et al.  Improvement in long-term stability of dye-sensitized solar cell for outdoor use , 2011 .

[9]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[10]  J. Meier,et al.  Recent Developments of High Efficiency Micromorph tandem solar cells in KAI-M PECVD reactors , 2010 .

[11]  David D. Smith,et al.  Generation 3: Improved performance at lower cost , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[12]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[13]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[14]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[15]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[16]  Naoki Koide,et al.  Recent Advances of Dye-Sensitized Solar Cells and Integrated Modules at SHARP , 2009 .

[17]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[18]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[19]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[20]  S. Guha,et al.  Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels , 2007 .

[21]  H. Sakata,et al.  Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[22]  Liyuan Han,et al.  High Efficiency of Dye-Sensitized Solar Cell and Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[23]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[24]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[25]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[26]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[27]  Lars Stolt,et al.  New world record Cu(In,Ga)Se2 based minimodule: 16.6% , 2000 .

[28]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[29]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[30]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[31]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[32]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[33]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[34]  Subhendu Guha,et al.  Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[35]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[36]  J. Carroll,et al.  SOLAR CELL EFFICIENCY , 1992 .

[37]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[38]  Kim W. Mitchell,et al.  Single and tandem junction CuInSe/sub 2/ cell and module technology , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[39]  D. Pier,et al.  SINGLE AND TANDEM JUNCTION CuInSe2 CELL AND MODULE TECHNOLOGY , 1988 .