A multiscale approach for model reduction of random microstructures
暂无分享,去创建一个
[1] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[2] Alexandre Clément,et al. Identification of random shapes from images through polynomial chaos expansion of random level set functions , 2009 .
[3] Pol D. Spanos,et al. Probabilistic engineering mechanics , 1992 .
[4] N. Zabaras,et al. Design of microstructure-sensitive properties in elasto-viscoplastic polycrystals using multi-scale homogenization , 2006 .
[5] Nicholas Zabaras,et al. Computing property variability of polycrystals induced by grain size and orientation uncertainties , 2007 .
[6] Nadine Aubry,et al. Spatiotemporal analysis of complex signals: Theory and applications , 1991 .
[7] M. Ostoja-Starzewski. Material spatial randomness: From statistical to representative volume element☆ , 2006 .
[8] Xiang Ma,et al. Kernel principal component analysis for stochastic input model generation , 2010, J. Comput. Phys..
[9] Daniele Venturi,et al. Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.
[10] T. Gabb,et al. THE EFFECT OF DUAL MICROSTRUCTURE HEAT TREATMENT ON AN ADVANCED NICKEL-BASE DISK ALLOY , 2004 .
[11] Nicholas Zabaras,et al. A concurrent model reduction approach on spatial and random domains for the solution of stochastic PDEs , 2006 .
[12] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[13] N. Zabaras,et al. The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals , 2009 .
[14] Wade Babcock,et al. Computational materials science , 2004 .
[15] N. J. Pagano,et al. Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .
[16] Nicholas Zabaras,et al. A maximum entropy approach for property prediction of random microstructures , 2006 .
[17] Amit Acharya,et al. Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .
[18] Nicholas Zabaras,et al. An object-oriented programming approach to the Lagrangian FEM analysis of large inelastic deformations and metal-forming processes , 1999 .
[19] Bin Wen,et al. Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques , 2010 .
[20] U. F. Kocks,et al. Physics and phenomenology of strain hardening: the FCC case , 2003 .
[21] R. Grimshaw. Journal of Fluid Mechanics , 1956, Nature.
[22] Haimin Yao,et al. Journal of the Mechanics and Physics of Solids , 2014 .
[23] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[24] H. J. AXON,et al. Progress in Materials Science , 1963, Nature.
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] N. Zabaras,et al. Investigating variability of fatigue indicator parameters of two-phase nickel-based superalloy microstructures , 2012 .
[27] J. Schröder,et al. Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .
[28] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[29] L. Anand,et al. A computational procedure for rate-independent crystal plasticity , 1996 .
[30] Baskar Ganapathysubramanian,et al. A non-linear dimension reduction methodology for generating data-driven stochastic input models , 2008, J. Comput. Phys..
[31] N. Zabaras,et al. Microstructure model reduction and uncertainty quantification in multiscale deformation processes , 2010 .
[32] Wei Li,et al. A virtual environment for the interrogation of 3D polycrystalline microstructures including grain size effects , 2009 .
[33] Baskar Ganapathysubramanian,et al. Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method , 2007, J. Comput. Phys..