Mesh Redistribution Strategies and Finite Element Schemes for Hyperbolic Conservation Laws

Abstract In this work we consider a new class of Relaxation Finite Element schemes for hyperbolic conservation laws, with more stable behavior on the limit area of the relaxation parameter. Combining this scheme with an efficient adapted spatial redistribution process considered also in this work, we form a robust scheme of controllable resolution. The results on a number of test problems show that this scheme can produce entropic-approximations of high resolution, even on the limit of the relaxation parameter where the scheme lacks of the relaxation mechanism. Thus we experimentally conclude that the proposed spatial redistribution process, has by its own interesting stabilization properties for computational solutions of conservation law problems.

[1]  George Beckett,et al.  Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem , 2000 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Athanasios E. Tzavaras,et al.  Viscosity and Relaxation Approximation for Hyperbolic Systems of Conservation Laws , 1997, Theory and Numerics for Conservation Laws.

[4]  Claes Johnson,et al.  On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .

[5]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[6]  Charalambos Makridakis,et al.  Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws , 2004, SIAM J. Numer. Anal..

[7]  Riccardo Fazio,et al.  Moving-Mesh Methods for One-Dimensional Hyperbolic Problems Using CLAWPACK , 2003 .

[8]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[9]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[10]  J. Hyman,et al.  An adaptive moving mesh method with static rezoning for partial differential equations , 2003 .

[11]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[12]  Huazhong Tang Solution of the shallow‐water equations using an adaptive moving mesh method , 2004 .

[13]  Laurent Gosse,et al.  Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..

[14]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[15]  C. Makridakis,et al.  Adaptive finite element relaxation schemes for hyperbolic conservation laws , 2001 .

[16]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[17]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[18]  Shengtai Li,et al.  Stability of Moving Mesh Systems of Partial Differential Equations , 1998, SIAM J. Sci. Comput..

[19]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[20]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[21]  Ivo Babuška,et al.  Basic principles of feedback and adaptive approaches in the finite element method , 1986 .

[22]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[23]  P. Lax,et al.  Dispersive approximations in fluid dynamics , 1991 .

[24]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[25]  Tao Tang,et al.  Adaptive Mesh Redistibution Method Based on Godunov's Scheme , 2003 .

[26]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[27]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[30]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[31]  Mikhail Shashkov,et al.  The Error-Minimization-Based Strategy for Moving Mesh Methods , 2006 .

[32]  P. Billingsley,et al.  Probability and Measure , 1980 .

[33]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[34]  Endre Süli,et al.  A Posteriori Error Analysis And Adaptivity For Finite Element Approximations Of Hyperbolic Problems , 1997 .

[35]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .