Preparation and photoelectrochemical properties of functional carbon nanotubes and Ti co-doped Fe2O3 thin films

[1]  H. Kim,et al.  Charge transfer in iron oxide photoanode modified with carbon nanotubes for photoelectrochemical wat , 2011 .

[2]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[3]  D. H. Wang,et al.  Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. , 2011, ACS applied materials & interfaces.

[4]  Liaochuan Jiang,et al.  Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid , 2010 .

[5]  Bhanu Pratap Singh,et al.  Enhanced photoelectrochemistry and interactions in cadmium selenide-functionalized multiwalled carbon nanotube composite films , 2010 .

[6]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[7]  Sunkuk Kim,et al.  The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites , 2010 .

[8]  Sonal,et al.  Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water , 2010 .

[9]  Liaochuan Jiang,et al.  Photoelectrochemical Study on Charge Transfer Properties of ZnO Nanowires Promoted by Carbon Nanotubes , 2009 .

[10]  E. McFarland,et al.  Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. , 2009, Chemical communications.

[11]  Liaochuan Jiang,et al.  Electrodeposition of TiO2 Nanoparticles on Multiwalled Carbon Nanotube Arrays for Hydrogen Peroxide Sensing , 2009 .

[12]  Bingqing Wei,et al.  Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation , 2009, Nanotechnology.

[13]  H. Cachet,et al.  EIS study of photo-induced modifications of nano-columnar TiO2 films , 2009 .

[14]  P. Biswas,et al.  Predicting the Band Structure of Mixed Transition Metal Oxides: Theory and Experiment , 2009 .

[15]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[16]  Arnold J. Forman,et al.  Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting , 2008 .

[17]  Shanqing Zhang,et al.  Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration , 2008 .

[18]  Piers R. F. Barnes,et al.  Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si , 2007 .

[19]  Prashant V. Kamat,et al.  Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection , 2007 .

[20]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[21]  Prashant V Kamat,et al.  Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells: charge injection from excited porphyrin into single-walled carbon nanotubes. , 2006, The journal of physical chemistry. B.

[22]  Jang‐Kyo Kim,et al.  Functionalization of carbon nanotubes using a silane coupling agent , 2006 .

[23]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[24]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[25]  G. E. Shahnazaryan,et al.  Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3–Nb2O5 , 2006 .

[26]  W. Ingler,et al.  A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting , 2006 .

[27]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[28]  Wei‐De Zhang Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays , 2006, Nanotechnology.

[29]  Ce Wang,et al.  Fabrication of PbS Nanoparticles in Polymer‐Fiber Matrices by Electrospinning , 2005 .

[30]  Eric L. Miller,et al.  Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes , 2005 .

[31]  Z. Fan,et al.  Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors , 2005 .

[32]  R. Černý,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. , 2005, The journal of physical chemistry. B.

[33]  Maurizio Prato,et al.  Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. , 2005, Angewandte Chemie.

[34]  S. Hotchandani,et al.  Single-Wall Carbon Nanotube Films for Photocurrent Generation. A Prompt Response to Visible-Light Irradiation , 2004 .

[35]  J. Baltrus,et al.  Photoresponse of p-type zinc-doped iron(III) oxide thin films. , 2004, Journal of the American Chemical Society.

[36]  Huijun Zhao,et al.  Characterization of Photoelectrocatalytic Processes at Nanoporous TiO2 Film Electrodes: Photocatalytic Oxidation of Glucose , 2003 .

[37]  N. Chaniotakis,et al.  Novel carbon materials in biosensor systems. , 2003, Biosensors & bioelectronics.

[38]  Wei‐De Zhang,et al.  Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. , 2002, Talanta.

[39]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[40]  Y. Liu,et al.  Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition , 2012 .

[41]  Lei Wang,et al.  Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan , 2010 .

[42]  Vladimir M. Aroutiounian,et al.  Investigation of ceramic Fe2O3â©Ta⪠photoelectrodes for solar energy photoelectrochemical converters , 2002 .