Scalable and Robust Bayesian Inference via the Median Posterior
暂无分享,去创建一个
David B. Dunson | Lizhen Lin | Stanislav Minsker | Sanvesh Srivastava | D. Dunson | Stanislav Minsker | Sanvesh Srivastava | Lizhen Lin
[1] Prosenjit Bose,et al. Fast approximations for sums of distances, clustering and the Fermat-Weber problem , 2003, Computational geometry.
[2] Kurt Hornik,et al. kernlab - An S4 Package for Kernel Methods in R , 2004 .
[3] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[4] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[5] P. Zitt,et al. Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm , 2011, 1101.4316.
[6] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[7] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[8] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[9] Stanislav Minsker. Geometric median and robust estimation in Banach spaces , 2013, 1308.1334.
[10] Noga Alon,et al. The Space Complexity of Approximating the Frequency Moments , 1999 .
[11] Ahn. Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring , 2012 .
[12] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[13] Andre Wibisono,et al. Streaming Variational Bayes , 2013, NIPS.
[14] Christian Rieger,et al. Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods , 2009, J. Mach. Learn. Res..
[15] John C. Duchi,et al. Distributed delayed stochastic optimization , 2011, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[16] Frank Nielsen,et al. Statistical exponential families: A digest with flash cards , 2009, ArXiv.
[17] Amir Beck,et al. Weiszfeld’s Method: Old and New Results , 2015, J. Optim. Theory Appl..
[18] Iain Murray,et al. A framework for evaluating approximation methods for Gaussian process regression , 2012, J. Mach. Learn. Res..
[19] M. Lerasle,et al. ROBUST EMPIRICAL MEAN ESTIMATORS , 2011, 1112.3914.
[20] Daniel J. Hsu,et al. Loss Minimization and Parameter Estimation with Heavy Tails , 2013, J. Mach. Learn. Res..
[21] Xiangyu Wang,et al. Parallel MCMC via Weierstrass Sampler , 2013, ArXiv.
[22] D D Baird,et al. Preimplantation urinary hormone profiles and the probability of conception in healthy women. , 1999, Fertility and sterility.
[23] Edward I. George,et al. Bayes and big data: the consensus Monte Carlo algorithm , 2016, Big Data and Information Theory.
[24] Kenji Fukumizu,et al. On integral probability metrics, φ-divergences and binary classification , 2009, 0901.2698.
[25] Max Welling,et al. Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget , 2013, ICML 2014.
[26] Chong Wang,et al. Asymptotically Exact, Embarrassingly Parallel MCMC , 2013, UAI.
[27] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[28] Cun-Hui Zhang,et al. The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[29] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .