Microdistribution of primordial Ne and Ar in fine‐grained rims, matrices, and dark inclusions of unequilibrated chondrites—Clues on nebular processes

Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration.

[1]  N. Vogel Chondrule formation and accretion processes in the early solar nebula: Clues from noble gases in different constituents of unequilibrated chondrites , 2003 .

[2]  P. Buseck,et al.  Fine‐grained rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 meteorites: Their origin and modification , 2002 .

[3]  U. Ott Noble Gases in Meteorites – Trapped Components , 2002 .

[4]  R. Wieler Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .

[5]  I. Weber,et al.  Mineralogy of fine‐grained material in the Krymka (LL3.1) chondrite , 2001 .

[6]  R. Wieler,et al.  Helium Isotopic Ratios in Carbonaceous Chondrites: Significant for the Early Solar Nebula and Circumstellar Diamonds? , 2001 .

[7]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[8]  K. Tomeoka,et al.  Phyllosilicate-rich chondrule rims in the vigarano cv3 chondrite: evidence for parent-body processes , 2000 .

[9]  F. Brenker,et al.  Evidence for solar nebula signatures in the matrix of the Allende meteorite , 2000 .

[10]  R. Wieler,et al.  The production of cosmogenic nuclides in stony meteoroids by galactic cosmic‐ray particles , 2000 .

[11]  T. Maruoka,et al.  A laboratory experiment on the influence of aqueous alteration on noble gas compositions in the Allende meteorite , 2000 .

[12]  C. Pillinger,et al.  Carbon, Nitrogen, and Noble Gas Study of Dark Inclusions in the Wells Ordinary Chondrite , 1999 .

[13]  Tomoki Nakamura,et al.  Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies , 1999 .

[14]  Tomoki Nakamura,et al.  Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: decipherment of nebular processes , 1999 .

[15]  T. Kojima,et al.  Arcuate band texture in a dark inclusion from the Vigarano CV3 chondrite: Possible evidence for early sedimentary processes , 1998 .

[16]  M. Prinz,et al.  Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebular origin , 1998 .

[17]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[18]  M. Zolensky,et al.  Petrology of Allende dark inclusions , 1997 .

[19]  G. Huss,et al.  The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history , 1996 .

[20]  T. Kojima,et al.  Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .

[21]  E. Scott,et al.  Formation of chondrules and chondrites in the protoplanetary nebula. , 1996 .

[22]  A. Brearley Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. , 1996 .

[23]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[24]  G. Huss,et al.  Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins , 1994 .

[25]  R. Clayton,et al.  Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .

[26]  A. Bischoff,et al.  Constraints on chondrule agglomeration from fine-grained chondrule rims , 1994 .

[27]  D. Sears,et al.  Two chondrule groups each with distinctive rims in Murchison recognized by cathodoluminescence , 1993 .

[28]  E. Anders,et al.  Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .

[29]  R. Wieler,et al.  He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes , 1993 .

[30]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[31]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[32]  D. Brownlee,et al.  Are some chondrule rims formed by impact processes? Observations and experiments. , 1991, Icarus.

[33]  D. Sears,et al.  Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites , 1991 .

[34]  R. Clayton,et al.  Dark inclusions in Allende, Leoville, and Vigarano - Evidence for nebular oxidation of CV3 constituents , 1990 .

[35]  D. J. Barber,et al.  Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .

[36]  H. Palme,et al.  Allende Xenolith AF: Undisturbed Record of Condensation and Aggregation of Matter in the Solar Nebula , 1989 .

[37]  L. Schultz,et al.  Helium, neon, and argon in meteorites: A data collection , 1989 .

[38]  R. Clayton,et al.  Exposure history of the regolithic chondrite Fayetteville: II. Solar-gas-free light inclusions , 1989 .

[39]  D. J. Barber,et al.  Primitive material surviving in chondrites - Matrix , 1988 .

[40]  E. Alexander,et al.  On the presolar origin of the “normal planetary” noble gas component in meteorites , 1987 .

[41]  R. Clayton,et al.  The Leoville (CV3) accretionary breccia , 1985 .

[42]  L. Grossman,et al.  Accretionary rims on inclusions in the Allende meteorite , 1985 .

[43]  E. Scott,et al.  Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules , 1984 .

[44]  Frank A. Podosek,et al.  Noble Gas Geochemistry: Noble Gases in the Earth , 1984 .

[45]  R. Housley,et al.  On the alteration of Allende chondrules and the formation of matrix , 1983 .

[46]  U. Ott,et al.  Noble-gas-rich separates from the Allende meteorite , 1981 .

[47]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .

[48]  D. Sears,et al.  Measuring metamorphic history of unequilibrated ordinary chondrites , 1980, Nature.

[49]  E. Anders,et al.  A carbonaceous inclusion from the Krymka LL-chondrite - Noble gases and trace elements , 1979 .

[50]  G. Wasserburg,et al.  Neon and argon in the Allende meteorite , 1977 .

[51]  E. Anders,et al.  Host Phase of a Strange Xenon Component in Allende , 1975, Science.

[52]  D. Heymann,et al.  Noble gases in unequilibrated ordinary chondrites. , 1968 .

[53]  K. Marti Trapped xenon and the classification of chondrites , 1967 .

[54]  O. Eugster,et al.  Notizen: A Redetermination of the Isotopic Composition of Atmospheric Neon , 1965 .

[55]  A. Nier,et al.  A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium , 1950 .

[56]  Bartoschewitz Meteorite Catalogue of Meteorites , 1940, Nature.