Estimation of Functional Connectivity Modulations During Task Engagement and Their Neurovascular Underpinnings Through Hemodynamic Reorganization Method

This study proposes an approach to understand the effect of task engagement through integrated analysis of modulations in functional networks and associated changes in their neurovascular underpinnings at every voxel. For this purpose, a novel approach that brings reorganization in acquired task-functional magnetic resonance imaging information based on hemodynamic characteristics of every task stimulus is proposed and validated. At first, modulations in functional networks of visual target detection task were estimated at every voxel through proposed methodology. It revealed task stimulus dependency in the modulation of default mode network (DMN). The DMN modulated as task negative network (TNN) during target stimulus. On the contrary, it was not entirely TNN during nontarget stimulus. The frontal-parietal and visual networks modulated as task positive network during both task stimuli. Further, modulations of neurovascular underpinnings associated with engagement of task were estimated by correlating the hemodynamically reorganized task blood oxygen level dependent information with simultaneously acquired electroencephalography frequency powers. It revealed the strong association of neurovascular underpinnings with their modulation of functional networks and the associated neuronal activity during task engagement. Finally, graph theoretical parameters such as local, global efficiency and clustering coefficient were also measured at the specific regions for validating the results of proposed method. Modulation observed in graph theory measures clearly validated the activation and deactivation of functional networks observed by the proposed method during task engagement. Thus, the voxel-wise estimation of task-related modulation of functional networks and associated neurovascular underpinnings through proposed technique provide better insights into neuronal mechanism involved during engagement in a task.