Path integration — a network model

Path integration is a primary means of navigation for a number of animals. We present a model which performs path integration with a neural network. This model is based on a neural structure called a sinusoidal array, which allows an efficient representation of vector information with neurons. We show that exact path integration can easily be achieved by a neural network. Thus deviations from the direct home trajectory, found previously in experiments with ants, can not be explained by computational limitations of the nervous system. Instead we suggest that the observed deviations are caused by a strategy to simplify landmark navigation.

[1]  J O'Keefe,et al.  An allocentric spatial model for the hippocampal cognitive map , 1991, Hippocampus.

[2]  David S. Touretzky,et al.  Neural Representation of Space Using Sinusoidal Arrays , 1993, Neural Computation.

[3]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[4]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[5]  Thomas Eggert,et al.  How to transform topographically ordered spatial information into motor commands , 1989 .

[6]  J. O’Keefe,et al.  Using hippocampal 'place cells' for navigation , 1993, Neural Information Processing Systems.

[7]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[8]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[9]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[10]  Horst Mittelstaedt,et al.  Analytical Cybernetics of Spider Navigation , 1985 .

[11]  A. S. Etienne,et al.  Dead reckoning in a small mammal: the evaluation of distance , 1993, Journal of Comparative Physiology A.

[12]  P. Moller,et al.  Homing by path integration in the spider Agelena labyrinthica Clerck , 2004, Journal of Comparative Physiology A.

[13]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[14]  R. Wehner,et al.  How do ants acquire their celestial ephemeris function? , 2005, Naturwissenschaften.

[15]  P. Görner,et al.  Homing Behavior and Orientation in the Funnel-Web Spider, Agelena labyrinthica Clerck , 1985 .

[16]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[17]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[19]  Stefan Glasauer,et al.  Idiothetic navigation in Gerbils and Humans , 1991 .

[20]  T. S. Collett,et al.  Biological compasses and the coordinate frame of landmark memories in honeybees , 1994, Nature.

[21]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[23]  Hank S. Wan,et al.  The Sinusoidal Array: A Theory of Representation for Spatial Vectors , 1994 .