mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology

The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of growth. Mammalian TOR complex 2 (mTORC2) regulates AGC kinase family members and is implicated in various disorders, including cancer and diabetes. Here we report that mTORC2 is localized to the endoplasmic reticulum (ER) subcompartment termed mitochondria-associated ER membrane (MAM). mTORC2 localization to MAM was growth factor-stimulated, and mTORC2 at MAM interacted with the IP3 receptor (IP3R)-Grp75–voltage-dependent anion-selective channel 1 ER-mitochondrial tethering complex. mTORC2 deficiency disrupted MAM, causing mitochondrial defects including increases in mitochondrial membrane potential, ATP production, and calcium uptake. mTORC2 controlled MAM integrity and mitochondrial function via Akt mediated phosphorylation of the MAM associated proteins IP3R, Hexokinase 2, and phosphofurin acidic cluster sorting protein 2. Thus, mTORC2 is at the core of a MAM signaling hub that controls growth and metabolism.

[1]  F. Khuri,et al.  mTOR complex 2 is involved in regulation of Cbl-dependent c-FLIP degradation and sensitivity of TRAIL-induced apoptosis. , 2013, Cancer research.

[2]  Carthene R. Bazemore-Walker,et al.  In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). , 2013, Journal of proteomics.

[3]  T. Simmen,et al.  Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). , 2013, Biochimica et biophysica acta.

[4]  H. Bose,et al.  σ-1 Receptor at the Mitochondrial-Associated Endoplasmic Reticulum Membrane Is Responsible for Mitochondrial Metabolic Regulation , 2012, Journal of Pharmacology and Experimental Therapeutics.

[5]  M. Hall,et al.  Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. , 2012, Cell metabolism.

[6]  Christian Appenzeller‐Herzog,et al.  Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. , 2012, Trends in cell biology.

[7]  P. Pinton,et al.  Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis , 2012, Cell Death and Disease.

[8]  A. Kihara,et al.  Palmitoylated calnexin is a key component of the ribosome–translocon complex , 2012, The EMBO journal.

[9]  M. Orešič,et al.  Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis , 2012, Proceedings of the National Academy of Sciences.

[10]  L. Berthiaume,et al.  Palmitoylated TMX and calnexin target to the mitochondria‐associated membrane , 2012, The EMBO journal.

[11]  P. Pinton,et al.  Mitochondria-associated membranes (MAMs) as hotspot Ca(2+) signaling units. , 2012, Advances in experimental medicine and biology.

[12]  M. Hall,et al.  Inducible raptor and rictor knockout mouse embryonic fibroblasts. , 2012, Methods in molecular biology.

[13]  Carthene R. Bazemore-Walker,et al.  Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles. , 2011, Biochemical and biophysical research communications.

[14]  D. Sarbassov,et al.  Endoplasmic reticulum is a main localization site of mTORC2. , 2011, Biochemical and biophysical research communications.

[15]  M. Gale,et al.  Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus , 2011, Proceedings of the National Academy of Sciences.

[16]  E. Jacinto,et al.  mTOR complex 2 signaling and functions , 2011, Cell cycle.

[17]  Y. Hathout,et al.  Quantitative Proteomic Analyses of Human Cytomegalovirus-Induced Restructuring of Endoplasmic Reticulum-Mitochondrial Contacts at Late Times of Infection* , 2011, Molecular & Cellular Proteomics.

[18]  C. Schaefer,et al.  Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction , 2011, Oncogene.

[19]  V. Zinzalla,et al.  Activation of mTORC2 by Association with the Ribosome , 2011, Cell.

[20]  Chien-Hung Chen,et al.  ER Stress Inhibits mTORC2 and Akt Signaling Through GSK-3β–Mediated Phosphorylation of Rictor , 2011, Science Signaling.

[21]  J. Alwine,et al.  The Changing Role of mTOR Kinase in the Maintenance of Protein Synthesis during Human Cytomegalovirus Infection , 2011, Journal of Virology.

[22]  Joydeep Mukherjee,et al.  Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme , 2011, The Journal of experimental medicine.

[23]  M. Sakaguchi,et al.  A New Cytosolic Pathway from a Parkinson Disease-associated Kinase, BRPK/PINK1 , 2010, The Journal of Biological Chemistry.

[24]  Philippe P Roux,et al.  mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide , 2010, The EMBO journal.

[25]  P. Pandolfi,et al.  PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release , 2010, Science.

[26]  Luca Scorrano,et al.  An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship , 2010, The EMBO journal.

[27]  John D. Scott,et al.  Rab32 Modulates Apoptosis Onset and Mitochondria-associated Membrane (MAM) Properties* , 2010, The Journal of Biological Chemistry.

[28]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[29]  N. Tanaka,et al.  Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. , 2010, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi.

[30]  L. Weiss,et al.  Coordinate Control of Host Centrosome Position, Organelle Distribution, and Migratory Response by Toxoplasma gondii via Host mTORC2* , 2010, The Journal of Biological Chemistry.

[31]  S. Schreiber,et al.  Direct control of mitochondrial function by mTOR , 2009, Proceedings of the National Academy of Sciences.

[32]  Adiel Cohen,et al.  TOR signaling in invertebrates. , 2009, Current opinion in cell biology.

[33]  Nadine Cybulski,et al.  TOR complex 2: a signaling pathway of its own. , 2009, Trends in biochemical sciences.

[34]  B. Stiles PI-3-K and AKT: Onto the mitochondria. , 2009, Advanced drug delivery reviews.

[35]  P. Pinton,et al.  Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells , 2009, Nature Protocols.

[36]  E. Cadenas,et al.  Akt1 Intramitochondrial Cycling Is a Crucial Step in the Redox Modulation of Cell Cycle Progression , 2009, PloS one.

[37]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.

[38]  M. Wieckowski,et al.  Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. , 2009, The international journal of biochemistry & cell biology.

[39]  Matthew H. Brush,et al.  Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis. , 2009, Molecular cell.

[40]  Robert V Farese,et al.  The Endoplasmic Reticulum Enzyme DGAT2 Is Found in Mitochondria-associated Membranes and Has a Mitochondrial Targeting Signal That Promotes Its Association with Mitochondria* , 2009, Journal of Biological Chemistry.

[41]  G. Ruvkun,et al.  Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. , 2009, Genes & development.

[42]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[43]  J. Crespo,et al.  Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation , 2008, Proceedings of the National Academy of Sciences.

[44]  T. Simmen,et al.  The subcellular distribution of calnexin is mediated by PACS-2. , 2008, Molecular biology of the cell.

[45]  S. Miyamoto,et al.  Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II , 2008, Cell Death and Differentiation.

[46]  M. Bootman,et al.  Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis , 2008, Proceedings of the National Academy of Sciences.

[47]  C. Nicchitta,et al.  Analysis of mRNA partitioning between the cytosol and endoplasmic reticulum compartments of mammalian cells. , 2008, Methods in molecular biology.

[48]  J. Crespo,et al.  Target of Rapamycin and LST8 Proteins Associate with Membranes from the Endoplasmic Reticulum in the Unicellular Green Alga Chlamydomonas reinhardtii , 2007, Eukaryotic Cell.

[49]  Adiel Cohen,et al.  PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis , 2007, PloS one.

[50]  T. Pozzan,et al.  Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. , 2007, Trends in cell biology.

[51]  B. Gajkowska,et al.  Mitofusin 2 (Mfn2): a key player in insulin-dependent myogenesis in vitro , 2007, Cell and Tissue Research.

[52]  P. Várnai,et al.  Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels , 2006, The Journal of cell biology.

[53]  K. Inoki,et al.  Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. , 2006, Genes & development.

[54]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[55]  Jacob D. Jaffe,et al.  mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s , 2006, Current Biology.

[56]  J. P. McCoy,et al.  The Mammalian Target of Rapamycin (mTOR) Pathway Regulates Mitochondrial Oxygen Consumption and Oxidative Capacity* , 2006, Journal of Biological Chemistry.

[57]  D. Yule,et al.  Akt Kinase Phosphorylation of Inositol 1,4,5-Trisphosphate Receptors* , 2006, Journal of Biological Chemistry.

[58]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[59]  R. Hresko,et al.  mTOR·RICTOR Is the Ser473 Kinase for Akt/Protein Kinase B in 3T3-L1 Adipocytes* , 2005, Journal of Biological Chemistry.

[60]  L. Wan,et al.  PACS‐2 controls endoplasmic reticulum–mitochondria communication and Bid‐mediated apoptosis , 2005, The EMBO journal.

[61]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[62]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[63]  D. Schmitt,et al.  Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? , 2004, The Biochemical journal.

[64]  U. Baumann,et al.  An efficient one-step site-directed and site-saturation mutagenesis protocol. , 2004, Nucleic acids research.

[65]  R. Dyer,et al.  Continuities between mitochondria and endoplasmic reticulum in the mammalian ovary , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[66]  R. Jope,et al.  Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3‐kinase activation , 2003, Journal of neurochemistry.

[67]  D. Schmitt,et al.  The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. , 2003, The Biochemical journal.

[68]  Benjamin R. Myers,et al.  FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Kandel,et al.  Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. , 2001, Genes & development.

[70]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[71]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[72]  J. Vance,et al.  A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. , 1994, The Journal of biological chemistry.

[73]  J. Vance Phospholipid synthesis in a membrane fraction associated with mitochondria. , 1990, The Journal of biological chemistry.

[74]  D. Sabatini,et al.  RIBOSOME-MEMBRANE INTERACTION , 1973, The Journal of cell biology.