Regression techniques for subspace-based black-box state-space system identification: an overview

As far as the identification of linear time-invariant state-space representation is concerned, among all of the solutions available in the literature, the subspace-based state-space model identification techniques have proved their efficiency in many practical cases since the beginning of the 90's. This paper introduces an overview of these techniques by focusing on their formulation as a least-squares problem. Apart from an article written by J. Qin, to the author's knowledge, such a regression formulation is not totally investigated in the books which can be considered as the references as far as subspace-based identification is concerned. Thus, in this paper, a specific attention is payed to the regression-based techniques used to identify systems working under open-loop as well as closed-loop conditions.

[1]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[2]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[3]  Richard W. Longman,et al.  Improvement of observer/Kalman filter identification (OKID) by residual whitening , 1992 .

[4]  O. L. R. Jacobs,et al.  Trends and progress in system identification , 1982, Autom..

[5]  Bo Wahlberg,et al.  A linear regression approach to state-space subspace system identification , 1996, Signal Process..

[6]  Thomas Kailath,et al.  Linear Systems , 1980 .

[7]  Michel Gevers,et al.  Identification for control , 1996 .

[8]  Thierry Bastogne,et al.  Multivariable identification of a winding process by subspace methods for tension control , 1998 .

[9]  Sergio Bittanti,et al.  An Application of Subspace-Based Techniques to Nuclear Spectroscopy , 1997 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Catarina J. M. Delgado,et al.  New approach to the estimation of the input matrices in subspace identification algorithms , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[12]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[13]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[14]  Alessandro Chiuso,et al.  On the relation between CCA and predictor-based subspace identification. , 2005, CDC 2005.

[15]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[16]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[17]  Ruijie Shi Subspace identification methods for process dynamic modeling , 2001 .

[18]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[19]  Bart De Moor,et al.  Recursive subspace identification for in flight modal analysis of airplanes , 2006 .

[20]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[21]  Magnus Jansson A NEW SUBSPACE IDENTIFICATION METHOD FOR OPEN AND CLOSED LOOP DATA , 2005 .

[22]  L.R.J. Haverkamp,et al.  State space identification - Theory and practice , 2001 .

[23]  Thomas J. Rothenberg,et al.  Efficient estimation with a priori information , 1974 .

[24]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[25]  M. Gevers,et al.  Representations of jointly stationary stochastic feedback processes , 1981 .

[26]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[27]  A. Chiuso The Role of Vector AutoRegressive Modeling in Subspace Identification , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[28]  Bo Wahlberg,et al.  System identification (SYSID '03) : a proceedings volume from the 13th IFAC Symposium on System Identification, Rotterdam, the Netherlands, 27-29 August 2003 , 2004 .

[29]  A. Chiuso,et al.  PREDICTION ERROR VS SUBSPACE METHODS IN CLOSED LOOP IDENTIFICATION , 2005 .

[30]  M. Verhaegen,et al.  Some Experience with the MOESP Class of Subspace Model Identification Methods in Identifying the BO105 Helicopter , 1994 .

[31]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[32]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[33]  M. Lovera,et al.  Continuous-time predictor-based subspace identification using laguerre filters , 2011 .

[34]  B. De Moor,et al.  Closed loop subspace system identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[35]  D. Bauer Some asymptotic theory for the estimation of linear systems using maximum likelihood methods or subspace algorithms , 1998 .

[36]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[37]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[38]  Lennart Ljung,et al.  Closed-Loop Subspace Identification with Innovation Estimation , 2003 .

[39]  Bart De Moor,et al.  Choice of state-space basis in combined deterministic-stochastic subspace identification , 1995, Autom..

[40]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[41]  Tohru Katayama,et al.  Subspace Methods for System Identification , 2005 .

[42]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[43]  Bart De Moor,et al.  Subspace system identification for mechanical engineering , 2002 .

[44]  Tomas McKelvey,et al.  Fully Parametrized State-Space Models in System Identification , 1994 .

[45]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[46]  Michel Gevers,et al.  On jointly stationary feedback-free stochastic processes , 1982 .

[47]  B. Wahlberg,et al.  4SID linear regression , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[48]  Lennart Ljung,et al.  A novel subspace identification approach with enforced causal models , 2005, Autom..

[49]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[50]  Marco Lovera,et al.  Continuous-time subspace identification in closed-loop using Laguerre filters , 2010, 49th IEEE Conference on Decision and Control (CDC).

[51]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[52]  Alessandro Chiuso,et al.  Asymptotic variance of subspace methods by data orthogonalization and model decoupling: a comparative analysis , 2004, Autom..

[53]  J. Maciejowski,et al.  System identification using balanced parametrizations , 1997, IEEE Trans. Autom. Control..

[54]  Guido M. Kuersteiner,et al.  AUTOMATIC INFERENCE FOR INFINITE ORDER VECTOR AUTOREGRESSIONS , 2005, Econometric Theory.

[55]  Bart De Moor,et al.  Algorithms for deterministic balanced subspace identification , 2005, Autom..

[56]  Alessandro Chiuso,et al.  Some Algorithmic aspects of Subspace Identification with Inputs , 2001 .

[57]  Marco Lovera,et al.  Continuous-time subspace identification in closed-loop , 2010 .

[58]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[59]  Dietmar Bauer,et al.  SUBSPACE ALGORITHMS , 2003 .

[60]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[61]  Lennart Ljung,et al.  Parallel QR Implementation of Subspace Identification with Parsimonious Models , 2003 .

[62]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[63]  Pieter Eykhoff,et al.  Trends and progress in system identification , 1981 .

[64]  V. Verdult,et al.  Filtering and System Identification: A Least Squares Approach , 2007 .

[65]  M. Gevers,et al.  A personal view of the development of system identification: A 30-year journey through an exciting field , 2006, IEEE Control Systems.

[66]  Bo Wahlberg,et al.  On Consistency of Subspace Methods for System Identification , 1998, Autom..

[67]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[68]  Pavel Trnka,et al.  Subspace identification method incorporating prior information , 2007, 2007 46th IEEE Conference on Decision and Control.

[69]  Dale E. Seborg,et al.  Identification of the Tennessee Eastman Challenge Process with Subspace Methods , 2000 .

[70]  P. Tavella,et al.  Time and the Kalman Filter , 2010, IEEE Control Systems.

[71]  Jan C. Willems,et al.  Dead beat observer synthesis , 1999 .

[72]  Laurent Bako,et al.  Parameterization and identification of multivariable state-space systems: A canonical approach , 2011, Autom..

[73]  Pavel Trnka,et al.  Subspace like identification incorporating prior information , 2009, Autom..

[74]  Magnus Jansson,et al.  Weighted low rank approximation and reduced rank linear regression , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[75]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[76]  Alessandro Chiuso,et al.  On the Asymptotic Properties of Closed-Loop CCA-Type Subspace Algorithms: Equivalence Results and Role of the Future Horizon , 2010, IEEE Transactions on Automatic Control.

[77]  T.I. Fossen,et al.  Kalman filtering for positioning and heading control of ships and offshore rigs , 2009, IEEE Control Systems.

[78]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[79]  Michel Verhaegen,et al.  Fast-array Recursive Closed-loop Subspace Model Identification , 2009 .

[80]  Dietmar Bauer,et al.  Asymptotic properties of subspace estimators , 2005, Autom..

[81]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[82]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[83]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[84]  Magnus Jansson,et al.  Subspace Identification and ARX Modeling , 2003 .

[85]  Mohamed Soliman,et al.  Subspace identification with prior steady-state information , 2010, The 2010 International Conference on Computer Engineering & Systems.

[86]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[87]  G C Dean,et al.  An Introduction to Kalman Filters , 1986 .

[88]  Håkan Hjalmarsson,et al.  Identification for control of multivariable systems: Controller validation and experiment design via LMIs , 2008, Autom..

[89]  L. Ljung,et al.  A least squares interpretation of sub-space methods for system identification , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[90]  Rolf Johansson,et al.  System modeling and identification , 1993 .

[91]  Gene H. Golub,et al.  Matrix computations , 1983 .

[92]  Hiroshi Oku,et al.  Application of a recursive subspace identification algorithm to change detection , 2003 .

[93]  Lennart Ljung,et al.  COMPARISONS OF SUBSPACE IDENTIFICATION METHODS FOR SYSTEMS OPERATING ON CLOSED-LOOP , 2005 .

[94]  Alessandro Chiuso ASYMPTOTIC EQUIVALENCE OF CERTAIN CLOSED LOOP SUBSPACE IDENTIFICATION METHODS , 2006 .

[95]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..

[96]  Carsten W. Scherer,et al.  Model-Based Control: , 2009 .

[97]  Lennart Ljung,et al.  Subspace identification from closed loop data , 1996, Signal Process..

[98]  I. Houtzager,et al.  Towards Data-Driven Control for Modern Wind Turbines , 2011 .

[99]  Alessandro Chiuso,et al.  Constructing the state of random processes with feedback , 2003 .

[100]  A. Chiuso,et al.  Geometry of Oblique Splitting, Minimality and Hankel Operators , 2003 .

[101]  Mohinder S Grewal,et al.  Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives] , 2010, IEEE Control Systems.