3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance

P-BiSbTe bulk materials with high texture, superior thermoelectric properties and robust mechanical performance were fabricated by laser 3D printing.

[1]  P. Bardet,et al.  Pulsed laser melting of bismuth telluride thermoelectric materials , 2019, Journal of Manufacturing Processes.

[2]  Amin Nozariasbmarz,et al.  N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications , 2019, Materials.

[3]  C. Uher,et al.  Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe , 2018, Journal of Materials Processing Technology.

[4]  M. Kanatzidis,et al.  High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe , 2018 .

[5]  Anubhav Jain,et al.  Low-Symmetry Rhombohedral GeTe Thermoelectrics , 2018 .

[6]  C. Sealy Additive manufactured steel breaks strength-ductility trade-off , 2018 .

[7]  C. Uher,et al.  Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing , 2018, RSC advances.

[8]  C. Uher,et al.  Fabrication and Thermoelectric Properties of n-Type CoSb2.85Te0.15 Using Selective Laser Melting. , 2018, ACS applied materials & interfaces.

[9]  M. Kanatzidis,et al.  Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. , 2018, Journal of the American Chemical Society.

[10]  Xianli Su,et al.  High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction , 2017 .

[11]  T. Pollock,et al.  3D printing of high-strength aluminium alloys , 2017, Nature.

[12]  Qingjie Zhang,et al.  Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification , 2017 .

[13]  M. Takashiri,et al.  Highly oriented crystal growth of nanocrystalline bismuth telluride thin films with anisotropic thermoelectric properties using two-step treatment , 2017 .

[14]  Wai Yee Yeong,et al.  Direct selective laser sintering and melting of ceramics: a review , 2017 .

[15]  D. Gu,et al.  Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts , 2017 .

[16]  Philippe M. Bardet,et al.  Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices , 2016 .

[17]  Z. Ren,et al.  Size effect in thermoelectric materials , 2016, npj Quantum Materials.

[18]  Jie Ji,et al.  Design, fabrication and feasibility analysis of a thermo-electric wearable helmet , 2016 .

[19]  M. Mikami,et al.  Rapid synthesis of thermoelectric compounds by laser melting , 2016 .

[20]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[21]  Qi Zhang,et al.  Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges   , 2016 .

[22]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[23]  J. Zou,et al.  High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering , 2015 .

[24]  Youhong Tang,et al.  Three‐Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction , 2015 .

[25]  Junyou Yang,et al.  Melting and solidification of bismuth antimony telluride under a high magnetic field: A new route to high thermoelectric performance , 2015 .

[26]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[27]  Xinbing Zhao,et al.  Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation , 2015 .

[28]  L. Tjeng,et al.  Intrinsic conduction through topological surface states of insulating Bi2Te3 epitaxial thin films , 2014, Proceedings of the National Academy of Sciences.

[29]  D. Gu,et al.  Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study , 2014 .

[30]  Han Li,et al.  High-Temperature Mechanical and Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3 Commercial Zone Melting Ingots , 2014, Journal of Electronic Materials.

[31]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[32]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[33]  Wei Zhu,et al.  Preferential growth transformation of Bi0.5Sb1.5Te3 films induced by facile post-annealing process: Enhanced thermoelectric performance with layered structure , 2014 .

[34]  Kyung-Ho Cho,et al.  Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film , 2013 .

[35]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[36]  Vladimir Leonov,et al.  Thermoelectric Energy Harvesting of Human Body Heat for Wearable Sensors , 2013, IEEE Sensors Journal.

[37]  Brian Mellor,et al.  Multiple material additive manufacturing – Part 1: a review , 2013 .

[38]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[39]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[40]  R. Poprawe,et al.  Laser additive manufacturing of metallic components: materials, processes and mechanisms , 2012 .

[41]  Antonio Domenico Ludovico,et al.  3D Finite Element Analysis in the selective laser melting process , 2011 .

[42]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[43]  Tiejun Zhu,et al.  Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties , 2010 .

[44]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[45]  Dexiu Huang,et al.  A Fast Optical Wavelength-Tunable Transmitter With a Linear Thermoelectric Cooler Driver , 2009, IEEE Electron Device Letters.

[46]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[47]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[48]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[49]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[50]  C.K. Wong,et al.  Fabrication of thermoelectric cooler for device integration , 2005, 2005 7th Electronic Packaging Technology Conference.

[51]  Zhong Lin Wang,et al.  Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. , 2005, Journal of the American Chemical Society.

[52]  Jun Jiang,et al.  Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting , 2005 .

[53]  Jun Jiang,et al.  Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering , 2005 .

[54]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[55]  T. Oh,et al.  Effects of excess Te on the thermoelectric properties of p-type 25% Bi2Te3-75% Sb2Te3 single crystal and hot-pressed sinter , 2001 .

[56]  Zhang Jinghua,et al.  Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy , 2000 .

[57]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[58]  D. Greenaway,et al.  Band structure of bismuth telluride, bismuth selenide and their respective alloys , 1965 .

[59]  Seizo Nakajima The crystal structure of Bi2Te3−xSex , 1963 .

[60]  Alaa Elwany,et al.  Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder , 2017 .

[61]  W. Marsden I and J , 2012 .

[62]  Igor Smurov,et al.  Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape , 2010 .

[63]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[64]  F. Klocke,et al.  Consolidation phenomena in laser and powder-bed based layered manufacturing , 2007 .