Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps

[1]  B. Kneller,et al.  Facies architecture of the Grès de Peïra Cava, SE France: landward stacking patterns in ponded turbiditic basins , 2007, Journal of the Geological Society.

[2]  Jeff Peakall,et al.  Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments , 2006 .

[3]  P. Talling,et al.  Anatomy of turbidites and linked debrites based on long distance (120 × 30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy , 2006 .

[4]  J. Peakall,et al.  Combined measurements of velocity and concentration in experimental turbidity currents , 2005 .

[5]  Z. Sylvester,et al.  Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania , 2004 .

[6]  R. Wynn,et al.  Beds comprising debrite sandwiched within co‐genetic turbidite: origin and widespread occurrence in distal depositional environments , 2004 .

[7]  P. Talling,et al.  The character and origin of thick base-of-slope sandstone units of the Peïra Cava outlier, SE France , 2004, Geological Society, London, Special Publications.

[8]  P. Joseph,et al.  Deep-water sedimentation in the Alpine Foreland Basin of SE France: New perspectives on the Grès d’Annot and related systems—an introduction , 2004, Geological Society, London, Special Publications.

[9]  B. Kneller,et al.  The influence of a lateral basin-slope on the depositional patterns of natural and experimental turbidity currents , 2004, Geological Society, London, Special Publications.

[10]  T. Elliott,et al.  The structural setting and palaeogeographical evolution of the Grès d’Annot Basin , 2004, Geological Society, London, Special Publications.

[11]  P. Joseph,et al.  Deep-water sedimentation in the Alpine Basin of SE France : new perspectives on the Grès d'Annot and related systems , 2004 .

[12]  P. Haughton,et al.  ‘Linked’ debrites in sand‐rich turbidite systems – origin and significance , 2003 .

[13]  Y. Sohn,et al.  Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro Formation, southern Chile) , 2002 .

[14]  R. Wynn,et al.  Experimental constraints on shear mixing rates and processes: implications for the dilution of submarine debris flows , 2002, Geological Society, London, Special Publications.

[15]  B. Kneller,et al.  Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation , 2001 .

[16]  Y. Sohn Depositional Processes of Submarine Debris Flows in the Miocene Fan Deltas, Pohang Basin, SE Korea with Special Reference to Flow Transformation , 2000 .

[17]  B. Kneller,et al.  Evaluating the Links Between Turbidite Characteristics and Gross System Architecture: Upscaling Insights from the Turbidite Sheet-System of Peïra Cava, SE France , 2000 .

[18]  Ben Kneller,et al.  Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope; deflection, reflection, and facies variation , 1999 .

[19]  Robert B. Kidd,et al.  Heterogeneity and lithotype distribution in ancient deep-sea canyons: Point Lobos deep-sea canyon as a reservoir analogue , 1998 .

[20]  M. Kováč,et al.  On Late Oligocene to Pliocene depocentre migrations and the evolution of the Carpathian-Pannonian system , 1996 .

[21]  Kelin X. Whipple,et al.  Hydroplaning of subaqueous debris flows , 1995 .

[22]  M. Valladares Siliciclastic-carbonate slope apron in an immature tensional margin (Upper Precambrian-Lower Cambrian), Central Iberian Zone, Salamanca, Spain , 1995 .

[23]  A. Martinius,et al.  Modified-grain-flow Deposits from the Upper Cretaceous Vallcarga Formation, South-Central Pyrenees, Spain , 1994 .

[24]  V. Hilton Architecture of deep-marine confined sandstone bodies, Eocene-Oligocene Gres d'Annot formation, SE France. , 1994 .

[25]  D. Stanley Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings: examples in the rock record , 1993 .

[26]  A. Bouma Clastic depositional styles and reservoir potential of Mediterranean basins , 1990 .

[27]  F. Weirich The generation of turbidity currents by subaerial debris flows, California , 1989 .

[28]  S. Leszczyński Characteristics and origin of fluxoturbidites from the Carpathian flysch (Cretaceous-Palaeogene), South Poland , 1989 .

[29]  P. Trémolières,et al.  Sédimentation et tectonique dans le bassin marin Eocène supérieur-Oligocène des Alpes du Sud , 1987 .

[30]  P. Souquet,et al.  Facies sequences in large-volume debris- and turbidity-flow deposits from the Pyrenees (Cretaceous; France, Spain) , 1987 .

[31]  R. Bourrouilh Evolutionary mass flow-megaturbidites in an interplate basin: Example of the north Pyrenean basin , 1987 .

[32]  J. M. Coleman,et al.  Peira-Cava Turbidite System, France , 1985 .

[33]  A. Bouma,et al.  Submarine fans and related turbidite systems , 1985 .

[34]  R. V. Fisher Flow transformations in sediment gravity flows , 1983 .

[35]  D. Stanley Welded slump-graded sand couplets: evidence for slide generated turbidity currents , 1982 .

[36]  D. Lowe Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents , 1982 .

[37]  H. Schwarz Subaqueous Slope Failures: Experiments and Modern Occurrences , 1982 .

[38]  A. Ślączka,et al.  A revision of the fluxoturbidite concept based on type examples in the Polish Carpathian Flysch , 1981 .

[39]  F. Krause,et al.  Submarine carbonate breccia beds—a oppositional model for two-layer, sediment gravity flows from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada , 1979 .

[40]  D. Stanley,et al.  Sedimentation in submarine canyons, fans and trenches , 1978 .

[41]  H. Reineck,et al.  Depositional sedimentary environments , 1973 .

[42]  M. Hampton,et al.  The Role of Subaqueous Debris Flow in Generating Turbidity Currents , 1972 .

[43]  J. R. Allen Mixing at Turbidity Current Heads, and Its Geological Implications , 1971 .

[44]  T. H. Andel,et al.  Ponded Sediments of the Mid-Atlantic Ridge between 22° and 23° North Latitude , 1969 .

[45]  D. Stanley,et al.  Sedimentological Evidence for an Emerged Land Mass in the Ligurian Sea during the Palaeogene , 1968, Nature.

[46]  N R Morgenstern,et al.  Submarine slumping and the initiation of turbidity currents , 1967 .

[47]  C. Larsonneur,et al.  Les courants de turbidité, les coulées boueuses et les glissements : Résultats d'expériences , 1965 .

[48]  Arnold H. Bouma,et al.  Sedimentology of some Flysch deposits : a graphic approach to facies interpretation , 1962 .

[49]  P. Kuenen,et al.  TURBIDITES IN FLYSCH OF THE POLISH CARPATHIAN MOUNTAINS , 1959 .

[50]  P. Kuenen,et al.  Turbidity Currents as a Cause of Graded Bedding , 1950, The Journal of Geology.