Stability of the Superposition of a Viscous Contact Wave with Two Rarefaction Waves to the Bipolar Vlasov-Poisson-Boltzmann System

We investigate the nonlinear stability of the superposition of a viscous contact wave and two rarefaction waves for one-dimensional bipolar Vlasov-Poisson-Boltzmann (VPB) system, which can be used to describe the transportation of charged particles under the additional electrostatic potential force. Based on a new micro-macro type decomposition around the local Maxwellian related to the bipolar VPB system in our previous work [26], we prove that the superposition of a viscous contact wave and two rarefaction waves is time-asymptotically stable to 1D bipolar VPB system under some smallness conditions on the initial perturbations and wave strength, which implies that this typical composite wave pattern is nonlinearly stable under the combined effects of the binary collisions, the electrostatic potential force, and the mutual interactions of different charged particles. Note that this is the first result about the nonlinear stability of the combination of two different wave patterns for the Vlasov-Poisson-Boltzmann system.

[1]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[2]  Kenji Nishihara,et al.  On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas , 1985 .

[3]  Feimin Huang,et al.  Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities , 2009, 0904.1836.

[4]  Lirong Huang,et al.  Stability of contact discontinuity for the two-species Vlasov–Poisson–Boltzmann system , 2016 .

[5]  Shi-Hsien Yu,et al.  Hydrodynamic limits with shock waves of the Boltzmann equation , 2005 .

[6]  Zhouping Xin,et al.  Convergence to rarefaction waves for the nonlinear Boltzmann equation and compressible Navier–Stokes equations , 2010 .

[7]  Zhouping Xin,et al.  Stability of Contact Discontinuities for the 1-D Compressible Navier-Stokes Equations , 2006 .

[8]  Jing Li,et al.  Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for One-Dimensional Compressible Navier–Stokes System , 2010 .

[9]  Huijiang Zhao,et al.  The Vlasov-Poisson-Boltzmann System for Soft Potentials , 2011, 1112.1453.

[10]  Tong Yang,et al.  A Half-space Problem for the Boltzmann Equation with Specular Reflection Boundary Condition , 2005 .

[11]  Jonathan Goodman,et al.  Nonlinear asymptotic stability of viscous shock profiles for conservation laws , 1986 .

[12]  Huijiang Zhao,et al.  Global Existence of Classical Solutions to the Vlasov-Poisson-Boltzmann System , 2006 .

[13]  Zhouping Xin,et al.  Nonlinear stability of viscous shock waves , 1993 .

[14]  Hongjun Yu,et al.  Cauchy Problem for the Vlasov–Poisson–Boltzmann System , 2006 .

[15]  Renjun Duan,et al.  The Vlasov–Poisson–Boltzmann System for a Disparate Mass Binary Mixture , 2016, 1601.01051.

[16]  Kenji Nishihara,et al.  Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas , 1986 .

[17]  Mingying Zhong,et al.  Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations , 2014, 1411.5470.

[18]  Shih-Hsien Yu,et al.  Nonlinear wave propagations over a Boltzmann shock profile , 2010 .

[19]  Johann Radon,et al.  Optimal Time Decay of the Vlasov–Poisson–Boltzmann System in $${\mathbb R^3}$$ , 2009, 0912.1742.

[20]  Yan Guo,et al.  The Vlasov‐Poisson‐Boltzmann system near Maxwellians , 2002 .

[21]  Shuangqian Liu,et al.  Stability of the Rarefaction Wave of the Vlasov-Poisson-Boltzmann System , 2014, SIAM J. Math. Anal..

[22]  Feimin Huang,et al.  Stability of contact discontinuity for the Boltzmann equation , 2006 .

[23]  Tai-Ping Liu,et al.  Energy method for Boltzmann equation , 2004 .

[24]  Hailiang Li,et al.  Spectrum Analysis for the Vlasov–Poisson–Boltzmann System , 2014, Archive for Rational Mechanics and Analysis.

[25]  Feimin Huang,et al.  Stability of Superposition of Viscous Contact Wave and Rarefaction Waves for Compressible Navier-Stokes System , 2015, 1502.00211.

[26]  Yi Wang,et al.  Vanishing Viscosity Limit of the Compressible Navier–Stokes Equations for Solutions to a Riemann Problem , 2012 .

[27]  Huijiang Zhao,et al.  Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation , 2006 .

[28]  MingYing Zhong,et al.  Optimal time-decay rates of the Boltzmann equation , 2014 .

[29]  Tai-Ping Liu,et al.  Nonlinear Stability of Shock Waves for Viscous Conservation Laws , 1985 .

[30]  Zhouping Xin,et al.  Contact discontinuity with general perturbations for gas motions , 2008 .

[31]  Huijiang Zhao,et al.  THE VLASOV-POISSON-BOLTZMANN SYSTEM FOR THE WHOLE RANGE OF CUTOFF SOFT POTENTIALS , 2017 .

[32]  Tong Yang,et al.  Stability of the One-Species Vlasov-Poisson-Boltzmann System , 2010, SIAM J. Math. Anal..

[33]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[34]  Stéphane Mischler,et al.  On the Initial Boundary Value Problem for the Vlasov–Poisson–Boltzmann System , 2000 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Yi Wang,et al.  Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity , 2010, 1011.1990.

[37]  Renjun Duan,et al.  The Vlasov-Poisson-Boltzmann System without Angular Cutoff , 2013, 1310.2726.

[38]  Yong Wang,et al.  The Limit of the Boltzmann Equation to the Euler Equations for Riemann Problems , 2011, SIAM J. Math. Anal..

[39]  Changjiang Zhu,et al.  Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum , 2006 .

[40]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[41]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[42]  Zhouping Xin,et al.  Pointwise decay to contact discontinuities for systems of viscous conservation laws , 1997 .

[43]  Tai-Ping Liu,et al.  Invariant Manifolds for Steady Boltzmann Flows and Applications , 2013 .

[44]  Shih-Hsien Yu,et al.  On the Solution of a Boltzmann System for Gas Mixtures , 2010 .

[45]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[46]  Qinghua Xiao,et al.  The vlasov-poisson-boltzmann system near maxwellians for long-range interactions , 2016 .

[47]  Hongjun Yu,et al.  Optimal Convergence Rates of Classical Solutions for Vlasov-Poisson-Boltzmann System , 2011 .

[48]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[49]  Teng Wang,et al.  Stability of Superposition of Two Viscous Shock Waves for the Boltzmann Equation , 2015, SIAM J. Math. Anal..

[50]  Feimin Huang,et al.  Stability of a Composite Wave of Two Viscous Shock Waves for the Full Compressible Navier-Stokes Equation , 2009 .