Robust Solutions in Stochastic Linear Programming

The recent developments in stochastic linear programming are reviewed here broadly in their applied aspects. They include non-parametric methods which are applicable in situations of incomplete knowledge and partial uncertainty. This framework is shown to be most suitable for developing robust optimal solutions. For instance, a class of non-parametric methods based on the minimax principle and the criteria of stochastic dominance is developed here to illustrate its wide scope of application. It is shown that this class of methods provides a measure of robustness through the adoption of a cautious policy. Some examples are discussed using the recent field of data envelopment analysis.

[1]  A. H. G. Rinnooy Kan Stochastic integer programming: The distribution problem , 1986 .

[2]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[3]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[4]  A. Tversky,et al.  Rational choice and the framing of decisions , 1990 .

[5]  Jati K. Sengupta,et al.  The influence curve approach in data envelopment analysis , 1991, Math. Program..

[6]  David E. Bell,et al.  Disappointment in Decision Making Under Uncertainty , 1985, Oper. Res..

[7]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[8]  S. Vajda,et al.  Probabilistic Programming , 1972 .

[9]  Jati K. Sengupta The Active Approach of Stochastic Optimization with New Applications , 1988 .

[10]  Jati K. Sengupta,et al.  The measurement of productive efficiency: A robust minimax approach , 1988 .

[11]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[12]  L. Robin Keller,et al.  An empirical investigation of relative risk aversion , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Yadolah Dodge,et al.  Mathematical Programming In Statistics , 1981 .

[14]  Roger J.-B. Wets,et al.  Stochastic programming, an Introduction , 1988 .

[15]  János Pintér,et al.  Contributions to the methodology of stochastic optimization , 1986 .

[16]  Jati K. Sengupta,et al.  Transformations in stochastic DEA models , 1990 .

[17]  P. Farquhar State of the Art—Utility Assessment Methods , 1984 .

[18]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[19]  Roger J.-B. Wets,et al.  Stochastic Programming: Solution Techniques and Approximation Schemes , 1982, ISMP.

[20]  Jati K. Sengupta Robust decisions in economic models , 1991, Comput. Oper. Res..

[21]  Peter C. Fishburn,et al.  Stochastic Dominance and Moments of Distributions , 1980, Math. Oper. Res..

[22]  Peter B. R. Hazell,et al.  A Linear Alternative to Quadratic and Semivariance Programming for Farm Planning under Uncertainty , 1971 .

[23]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[24]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[25]  V. V Kolbin,et al.  Stochastic Programming , 1977 .

[26]  Paul E. Lehner,et al.  Evaluation of two alternative models for a theory of risk: I. Are moments of distributions useful in assessing risk? , 1981 .

[27]  A. Charnes,et al.  Classifying and characterizing efficiencies and inefficiencies in data development analysis , 1986 .

[28]  M. Teboulle,et al.  The duality between expected utility and penalty in stochastic linear programming , 1986 .

[29]  Jati Kumar Sengupta,et al.  Stochastic programming: Methods and applications , 1972 .

[30]  Jati Kumar Sengupta,et al.  Efficiency Analysis by Production Frontiers: The Nonparametric Approach , 1988 .

[31]  Gerhard Tintner,et al.  A Note on the Use of Nonparametric Statistics in Stochastic Linear Programming , 1972 .

[32]  Peter C. Fishburn,et al.  Decision And Value Theory , 1965 .

[33]  I. Olkin,et al.  Selecting and Ordering Populations: A New Statistical Methodology , 1977 .

[34]  Lennart Hjalmarsson,et al.  Deterministic parametric and nonparametric estimation of efficiency in service production: A comparison , 1990 .

[35]  Z. W. Kmietowicz,et al.  Decision Theory and Incomplete Knowledge , 1981 .

[36]  Jati K. Sengupta,et al.  Data envelopment analysis for efficiency measurement in the stochastic case , 1987, Comput. Oper. Res..

[37]  Jati K. Sengupta,et al.  Structural efficiency in stochastic models of data envelopment analysis , 1990 .

[38]  Abraham Charnes,et al.  Cone ratio data envelopment analysis and multi-objective programming , 1989 .

[39]  J. Sengupta Maximum probability dominance and portfolio theory , 1991 .