暂无分享,去创建一个
[1] Zoubin Ghahramani,et al. Local and global sparse Gaussian process approximations , 2007, AISTATS.
[2] J. Templeton. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .
[3] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[4] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[5] Venkat Raman,et al. Influence of Fuel Stratification on Turbulent Flame Propagation , 2015 .
[6] Allen Gersho,et al. Fast search algorithms for vector quantization and pattern matching , 1984, ICASSP.
[7] Andy J. Keane,et al. A Data Parallel Approach for Large-Scale Gaussian Process Modeling , 2002, SDM.
[8] Nilanjan Chakraborty,et al. Assessment of sub-grid scalar flux modelling in premixed flames for Large Eddy Simulations: A-priori Direct Numerical Simulation analysis , 2015 .
[9] Y. Kawahara,et al. Telemetry-mining: a machine learning approach to anomaly detection and fault diagnosis for space systems , 2006, 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06).
[10] Anand Pratap Singh,et al. New Approaches in Turbulence and Transition Modeling Using Data-driven Techniques , 2015 .
[11] Sunho Park,et al. Hierarchical Gaussian Process Regression , 2010, ACML.
[12] Ramani Duraiswami,et al. Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration , 2007, SIAM J. Sci. Comput..
[13] Leslie Greengard,et al. Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[14] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[15] Karthik Duraisamy,et al. A paradigm for data-driven predictive modeling using field inversion and machine learning , 2016, J. Comput. Phys..
[16] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[17] Taiyi Zhang,et al. Multi-scale Gaussian Processes model , 2006 .
[18] Bernhard Schölkopf,et al. Sparse multiscale gaussian process regression , 2008, ICML '08.
[19] Jeffrey C. Lagarias,et al. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..
[20] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[21] Robert B. Gramacy,et al. Massively parallel approximate Gaussian process regression , 2013, SIAM/ASA J. Uncertain. Quantification.
[22] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[23] Jean-Luc Aider,et al. Closed-loop separation control using machine learning , 2014, Journal of Fluid Mechanics.
[24] Jerzy Chomiak,et al. Effects of premixed flames on turbulence and turbulent scalar transport , 2010 .
[25] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[26] Rs Cant,et al. Scalar transport modeling in large eddy simulation of turbulent premixed flames , 2002 .
[27] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[28] Trevor Darrell,et al. Sparse probabilistic regression for activity-independent human pose inference , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[29] E Mjolsness,et al. Machine learning for science: state of the art and future prospects. , 2001, Science.