ℓ2-ℓ0 Regularization Path Tracking Algorithms

Sparse signal approximation can be formulated as the mixed L2-L0 minimization problem min_x J(x;lambda)=||y-Ax||_2^2+lambda||x||_0. We propose two heuristic search algorithms to minimize J for a continuum of lambda-values, yielding a sequence of coarse to fine approximations. Continuation Single Best Replacement is a bidirectional greedy algorithm adapted from the Single Best Replacement algorithm previously proposed for minimizing J for fixed lambda. L0 regularization path track is a more complex algorithm exploiting that the L2-L0 regularization path is piecewise constant with respect to lambda. Tracking the L0 regularization path is done in a sub-optimal manner by maintaining (i) a list of subsets that are candidates to be solution supports for decreasing lambda's and (ii) the list of critical lambda-values around which the solution changes. Both algorithms gradually construct the L0 regularization path by performing single replacements, i.e., adding or removing a dictionary atom from a subset. A straightforward adaptation of these algorithms yields sub-optimal solutions to min_x ||y-Ax||_2^2 subject to ||x||_0 =0 and to min_x ||x||_0 subject to ||y-Ax||_2^2<= epsilon for continuous values of epsilon. Numerical simulations show the effectiveness of the algorithms on a difficult sparse deconvolution problem inducing a highly correlated dictionary A.

[1]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[2]  Dag Haugland A Bidirectional Greedy Heuristic for the Subspace Selection Problem , 2007, SLS.

[3]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[4]  Patrick Siarry,et al.  Optimization in signal and image processing , 2009 .

[5]  Guillermo Sapiro,et al.  Universal Regularizers for Robust Sparse Coding and Modeling , 2010, IEEE Transactions on Image Processing.

[6]  R. Stolzenberg,et al.  Multiple Regression Analysis , 2004 .

[7]  Mark C. W. van Rossum,et al.  A Novel Spike Distance , 2001, Neural Computation.

[8]  Srikantan S. Nagarajan,et al.  Iterative Reweighted l1 and l2 Methods for Finding Sparse Solution , 2016 .

[9]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[10]  B. Rao,et al.  Forward sequential algorithms for best basis selection , 1999 .

[11]  L. Rebollo-Neira,et al.  Optimized orthogonal matching pursuit approach , 2002, IEEE Signal Processing Letters.

[12]  Deanna Needell,et al.  Signal Space CoSaMP for Sparse Recovery With Redundant Dictionaries , 2012, IEEE Transactions on Information Theory.

[13]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[14]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[15]  Ali Gholami,et al.  A General Framework for Sparsity-Based Denoising and Inversion , 2011, IEEE Transactions on Signal Processing.

[16]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[17]  Mikael Skoglund,et al.  Projection-Based and Look-Ahead Strategies for Atom Selection , 2011, IEEE Transactions on Signal Processing.

[18]  Charles Soussen,et al.  From Bernoulli–Gaussian Deconvolution to Sparse Signal Restoration , 2011, IEEE Transactions on Signal Processing.

[19]  Ivan W. Selesnick,et al.  Sparse Signal Estimation by Maximally Sparse Convex Optimization , 2013, IEEE Transactions on Signal Processing.

[20]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[21]  R. Tibshirani,et al.  REJOINDER TO "LEAST ANGLE REGRESSION" BY EFRON ET AL. , 2004, math/0406474.

[22]  Charles Soussen,et al.  Sparse deconvolution: Comparison of statistical and deterministic approaches , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[23]  E. Wasserstrom Numerical Solutions by the Continuation Method , 1973 .

[24]  Petre Stoica,et al.  Model order estimation via penalizing adaptively the likelihood (PAL) , 2013, Signal Process..

[25]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[26]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[28]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[29]  Mila Nikolova,et al.  Description of the Minimizers of Least Squares Regularized with 퓁0-norm. Uniqueness of the Global Minimizer , 2013, SIAM J. Imaging Sci..

[30]  Przemyslaw Dymarski,et al.  Greedy sparse decompositions: a comparative study , 2011, EURASIP J. Adv. Signal Process..

[31]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations , 2011, IEEE Transactions on Information Theory.

[32]  Kenneth N. Berk,et al.  Forward and backward stepping in variable selection , 1980 .

[33]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[34]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[35]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[36]  Cédric Herzet,et al.  Bayesian pursuit algorithms , 2010, 2010 18th European Signal Processing Conference.

[37]  Thomas Blumensath,et al.  Accelerated iterative hard thresholding , 2012, Signal Process..

[38]  Christian Jutten,et al.  A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed $\ell ^{0}$ Norm , 2008, IEEE Transactions on Signal Processing.

[39]  G. Golub,et al.  Good Ridge Parameter , 1979 .

[40]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[41]  Alan J. Miller Subset Selection in Regression , 1992 .

[42]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[43]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[44]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[45]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[46]  Charles Soussen,et al.  A continuation approach to estimate a solution path of mixed L2-L0 minimization problems , 2009 .

[47]  Piet M.T. Broersen,et al.  Subset Regression with Stepwise Directed Search , 1986 .

[48]  Sébastien Bourguignon,et al.  Resolution enhancement of ultrasonic signals by up-sampled sparse deconvolution , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[49]  Michael Elad,et al.  L1-L2 Optimization in Signal and Image Processing , 2010, IEEE Signal Processing Magazine.