Arm locking performance with the new LISA design

The laser interferometer space antenna (LISA) is a future space-based gravitational wave detector designed to be sensitive to sources radiating in the low frequency regime (0.1 mHz to 1 Hz). LISA’s interferometer signals will be dominated by laser frequency noise which has to be suppressed by about seven orders of magnitude using an algorithm called time delay interferometry (TDI). Arm locking has been proposed to reduce the laser frequency noise by a few orders of magnitude to reduce the potential risks associated with TDI. In this paper, we present an updated performance model for arm locking for the new LISA mission using 2.5 Gm arm lengths, the currently assumed clock noise, spacecraft motion based on LISA Pathfinder data and shot noise. We also update the Doppler frequency pulling estimates during lock acquisition.

[1]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[2]  M. Tröbs,et al.  Testing the NGO/LISA optical bench , 2019, International Conference on Space Optics — ICSO 2012.

[3]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[4]  David Robertson,et al.  LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.

[5]  M. Tinto,et al.  Time-delay interferometry and clock-noise calibration , 2018, Physical Review D.

[6]  Robert Eliot Spero,et al.  Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission , 2017 .

[7]  L. Nuttall,et al.  GEO 600 and the GEO-HF upgrade program: successes and challenges , 2015, 1510.00317.

[8]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[9]  Stefanie Kroker,et al.  The Einstein Telescope , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[10]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[11]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[12]  S. Mitryk Laser noise mitigation through time delay interferometry for space-based gravitational wave interferometers using the UF laser interferometry simulator , 2012 .

[13]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[14]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[15]  Yinan Yu Arm locking for laser interferometer space antenna , 2011 .

[16]  Hartmut Grote,et al.  The GEO 600 status , 2010 .

[17]  James Ira Thorpe LISA long-arm interferometry , 2010 .

[18]  Peiman Maghami,et al.  Arm locking for the Laser Interferometer Space Antenna , 2009, Optical Engineering + Applications.

[19]  Performance of arm locking in LISA , 2009, 0908.0290.

[20]  Daniel A. Shaddock,et al.  Laser frequency stabilization by dual arm locking for LISA , 2008 .

[21]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[22]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[23]  Massimo Tinto,et al.  On the laser frequency stabilization by locking to a LISA arm , 2004 .

[24]  John W. Armstrong,et al.  Time-delay interferometry for LISA , 2002 .

[25]  F. Raab,et al.  Laser interferometer gravitational-wave observatory , 1993, Proceedings of LEOS '93.