Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats.

Intervention studies with procyanidin (PC)-rich extracts and products such as cocoa and wine suggest protective effects of PC against cardiovascular diseases. However, there is no consensus on the absorption and metabolism of PC dimers. Interestingly, nothing is known about the absorption of A-type PC. In this study, the absorption and metabolism of purified PC dimers A1 [epicatechin-(2-O-7, 4-8)-catechin], A2 [epicatechin-(2-O-7, 4-8)-epicatechin], and B2 [epicatechin-(4-8)-epicatechin], A-type trimers, a mixture of A1, B2, and a tetrameric A-type, and monomeric epicatechin were compared by in situ perfusion of the small intestine of rats for 0-30 min. The rats had their bile duct, portal vein, and small intestine cannulated. Unmodified and methylated metabolites were distinguished from their conjugates by differential beta-glucuronidase treatment. A1 and A2 dimers were absorbed from the small intestine of rats and they were better absorbed than dimer B2. Absorption of the A-type dimers was only 5-10% of that of monomeric epicatechin. Dimers were not conjugated or methylated in contrast to epicatechin, which was partly methylated and 100% conjugated. A-type trimers were not absorbed. Furthermore, the presence of tetrameric PC enhanced the absorption of B2 but not that of A1. Epicatechin, methylated epicatechin, and their conjugates were not found as metabolites of the PC tested. In conclusion, dimers A1, A2, and B2 are slightly absorbed but are not conjugated or methylated, thus conserving their biological activity after absorption. Because PC contents of foods are relatively high, dimers may contribute to systemic effects of PC.

[1]  J. Vincken,et al.  Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. , 2009, Journal of agricultural and food chemistry.

[2]  Ian Harvey,et al.  Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. , 2008, The American journal of clinical nutrition.

[3]  T. Kanda,et al.  Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. , 2007, Carcinogenesis.

[4]  T. Kanda,et al.  Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. , 2007, Journal of agricultural and food chemistry.

[5]  B. Cerdá,et al.  A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. , 2007, Journal of agricultural and food chemistry.

[6]  N. Hollenberg,et al.  (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Akiyama,et al.  Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. , 2006, Journal of agricultural and food chemistry.

[8]  I. Arts,et al.  The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. , 2004, The British journal of nutrition.

[9]  Liliana Jiménez,et al.  Polyphenols: food sources and bioavailability. , 2004, The American journal of clinical nutrition.

[10]  G. Beecher,et al.  Concentrations of proanthocyanidins in common foods and estimations of normal consumption. , 2004, The Journal of nutrition.

[11]  A. Scalbert,et al.  Metabolism of dietary procyanidins in rats. , 2003, Free radical biology & medicine.

[12]  J. Laranjinha,et al.  Antioxidant protection of low density lipoprotein by procyanidins: structure/activity relationships. , 2003, Biochemical pharmacology.

[13]  M. Sasaki,et al.  Structures of (-)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (-)-epicatechin: differences between human and rat. , 2003, Free radical biology & medicine.

[14]  M. Kikuchi,et al.  Procyanidin B1 Is Detected in Human Serum after Intake of Proanthocyanidin-rich Grape Seed Extract , 2003, Bioscience, biotechnology, and biochemistry.

[15]  C. Fraga,et al.  Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. , 2002, The American journal of clinical nutrition.

[16]  M. Natsume,et al.  Absorption and urinary excretion of procyanidin B2 [epicatechin-(4beta-8)-epicatechin] in rats. , 2002, Free radical biology & medicine.

[17]  A. Scalbert,et al.  Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3 , 2002, British Journal of Nutrition.

[18]  C. Rice-Evans,et al.  Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. , 2001, Biochemical and biophysical research communications.

[19]  A. Scalbert,et al.  Catechin is metabolized by both the small intestine and liver of rats. , 2001, The Journal of nutrition.

[20]  G. Williamson,et al.  Dietary intake and bioavailability of polyphenols. , 2000, The Journal of nutrition.

[21]  Y. Kan,et al.  Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. , 1999, Bioscience, biotechnology, and biochemistry.

[22]  F. Nanjo,et al.  Identification of (-)-epicatechin metabolites and their metabolic fate in the rat. , 1999, Drug metabolism and disposition: the biological fate of chemicals.

[23]  J. Terao,et al.  Accumulation of (-)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. , 1998, The Journal of nutrition.

[24]  J. Karchesy,et al.  Comparison of the Inhibitory Effects of Monomeric, Dimeric, and Trimeric Procyanidins on the Biochemical Markers of Skin Tumor Promotion in Mouse Epidermis in vivo , 1994, Planta medica.

[25]  Gary Williamson,et al.  Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. , 2005, The American journal of clinical nutrition.

[26]  Gary Williamson,et al.  Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. , 2005, The American journal of clinical nutrition.