Design of hardware RGB to HMMD converter based on reversible logic

Reversible logic computation is one of the most essential promising technologies in designing low-power digital circuits, optical information processing, quantum dot cellular automata, fault tolerant system and nanotechnology. In fact, the conventional digital circuits dissipate a significant amount of energy because several bits of information are deleted during the treatments. In reversible computation, the information bits are not lost. This study presents a novel design of reversible RGB to HMMD converter circuit. The proposed hardware converter is based on several reversible sub-modules as: adder, subtractor, multiplier, register, multiplexer comparator and others. In order to demonstrate the efficiency of the proposed logic design, each sub-module is shown in terms of number of quantum cost needed, gates required delay and garbage outputs produced. Since the works in the field of reversible logic video treatment has only started to bloom, the proposed contribution will engender a new thread of research in the field of reversible real time video treatment.

[1]  Lafifa Jamal,et al.  Novel reversible division hardware , 2009, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems.

[2]  Jia Lee,et al.  General design of reversible sequential machines based on reversible logic elements , 2015, Theor. Comput. Sci..

[3]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[5]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[6]  Alpha Agape Gopalai,et al.  Design and synthesis of reversible arithmetic and Logic Unit (ALU) , 2014, 2014 International Conference on Computer, Communications, and Control Technology (I4CT).

[7]  P. Kaur,et al.  Design of fault tolearnt full Adder/Subtarctor using reversible gates , 2012, 2012 International Conference on Computer Communication and Informatics.

[8]  Vinayak Hegde,et al.  Design of Efficient Reversible Binary Comparator , 2012 .

[9]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[10]  Dean S. Messing,et al.  The MPEG-7 colour structure descriptor: image description using colour and local spatial information , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[12]  Muhammad Mahbubur Rahman,et al.  Efficient Approaches for Designing Fault Tolerant Reversible Carry Look-Ahead and Carry-Skip Adders , 2010, ArXiv.

[13]  N. Ranganathan,et al.  Reversible logic based multiplication computing unit using binary tree data structure , 2015, The Journal of Supercomputing.

[14]  Anas N. Al-Rabadi,et al.  Closed-System Quantum Logic Network Implementation of the Viterbi Algorithm , 2009 .

[15]  Claudio Moraga Mixed polarity reversible Peres gates , 2015, ArXiv.

[16]  A. N. Nagamani,et al.  Design of optimized reversible binary adder/subtractor and BCD adder , 2014, 2014 International Conference on Contemporary Computing and Informatics (IC3I).

[17]  Ashutosh Kumar Singh,et al.  Efficient three variables reversible logic synthesis using mixed-polarity Toffoli gate , 2015 .

[18]  J. Ohm The MPEG-7 Color Descriptors , 2005 .

[19]  Harpreet Kaur,et al.  Synthesis and Designingof Reversible Adder/Subtracter Circuits , 2014 .

[20]  H. Thapliyal,et al.  Design of a comparator tree based on reversible logic , 2010, 10th IEEE International Conference on Nanotechnology.

[21]  M. H. Vasantha,et al.  Reversible full/half adder with optimum power dissipation , 2016, 2016 10th International Conference on Intelligent Systems and Control (ISCO).

[22]  H. V. Jayashree,et al.  Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier , 2016, The Journal of Supercomputing.

[23]  K. B. Raja,et al.  Low Power Reversible Parallel Binary Adder/Subtractor , 2010, VLSIC 2010.

[24]  Keivan Navi,et al.  Ultra-area-efficient reversible multiplier , 2012, Microelectron. J..

[25]  N. Ranganathan,et al.  Design of a Reversible ALU Based on Novel Programmable Reversible Logic Gate Structures , 2011, 2011 IEEE Computer Society Annual Symposium on VLSI.

[26]  Ashutosh Kumar Singh,et al.  Heuristic Synthesis of Reversible Logic – A Comparative Study , 2014 .

[27]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[28]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[29]  Madha Sowrya Sesha Chandra,et al.  Design of Register File Using Reversible Logic , 2017 .

[30]  P. Moallem,et al.  A Novel Design of Reversible Multiplier Circuit , 2013 .

[31]  Sajjad Waheed,et al.  A new approach of presenting reversible logic gate in nanoscale , 2015, SpringerPlus.

[32]  H. R. Bhagyalakshmi,et al.  AN IMPROVED DESIGN OF A MULTIPLIER USING REVERSIBLE LOGIC GATES , 2010 .

[33]  Majid Haghparast,et al.  Optimised reversible divider circuit , 2016 .

[34]  R. Feynman Quantum mechanical computers , 1986 .

[35]  N. Ranganathan,et al.  Design of efficient reversible logic-based binary and BCD adder circuits , 2013, JETC.

[36]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[37]  Guowu Yang,et al.  Majority-based reversible logic gates , 2005, Theor. Comput. Sci..

[38]  Santosh Kumar,et al.  Ultrafast optical reversible double Feynman logic gate using electro-optic effect in lithium-niobate based Mach Zehnder interferometers , 2017, OPTO.

[39]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[40]  Mitchell A. Thornton,et al.  Efficient adder circuits based on a conservative reversible logic gate , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[41]  Majid Haghparast,et al.  A novel nanometric fault tolerant reversible divider , 2012 .

[42]  Jian Cao,et al.  Transistor realization of reversible "ZS" series gates and reversible array multiplier , 2011, Microelectron. J..

[43]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.