Energy harvesting from vertically aligned PZT nanowire arrays

In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

[1]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[2]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[3]  Henry A. Sodano,et al.  Vertically aligned BaTiO3 nanowire arrays for energy harvesting , 2014 .

[4]  N. Setter,et al.  Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires , 2007 .

[5]  G. Odegard,et al.  Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires , 2010 .

[6]  Haixiong Tang,et al.  Scalable Synthesis of Morphotropic Phase Boundary Lead Zirconium Titanate Nanowires for Energy Harvesting , 2014, Advanced materials.

[7]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[8]  Haixiong Tang,et al.  Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites , 2013 .

[9]  A. Datta,et al.  Controlled Ti seed layer assisted growth and field emission properties of Pb(Zr0.52Ti0.48)O3 nanowire arrays. , 2013, ACS applied materials & interfaces.

[10]  Daniel J. Inman,et al.  Generation and Storage of Electricity from Power Harvesting Devices , 2005 .

[11]  Henry A. Sodano,et al.  Multifunctional Barium Titanate Coated Carbon Fibers , 2014 .

[12]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[13]  B. A. Patterson,et al.  ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting , 2016 .

[14]  Zhong Lin Wang,et al.  Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. , 2006, Nano letters.

[15]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[16]  Yan Zhang,et al.  Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor , 2013, Nanotechnology.

[17]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[18]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[19]  Timothy J. Shankwitz,et al.  Biomimetic Nanostructured Interfaces for Hierarchical Composites , 2016 .

[20]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[21]  Pritish Mukherjee,et al.  Hierarchically Ordered Nano‐Heterostructured PZT Thin Films with Enhanced Ferroelectric Properties , 2014 .

[22]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[23]  M. Al-Haik,et al.  Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam , 2015, Nanotechnology.

[24]  Haixiong Tang,et al.  Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications , 2014, Nanotechnology.

[25]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[26]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[27]  Henry A. Sodano,et al.  Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays , 2009 .

[28]  A. B. Moghaddam,et al.  SYNTHESIS OF ZNO NANOPARTICLES AND ELECTRODEPOSITION OF POLYPYRROLE/ZNO NANOCOMPOSITES THIN FILMS , 2009 .

[29]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.