Algorithms for GPU‐based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals

A custom code for molecular dynamics simulations has been designed to run on CUDA‐enabled NVIDIA graphics processing units (GPUs). The double‐precision code simulates multicomponent fluids, with intramolecular and intermolecular forces, coarse‐grained and atomistic models, holonomic constraints, Nosé–Hoover thermostats, and the generation of distribution functions. Algorithms to compute Lennard‐Jones and Gay‐Berne interactions, and the electrostatic force using Ewald summations, are discussed. A neighbor list is introduced to improve scaling with respect to system size. Three test systems are examined: SPC/E water; an n‐hexane/2‐propanol mixture; and a liquid crystal mesogen, 2‐(4‐butyloxyphenyl)‐5‐octyloxypyrimidine. Code performance is analyzed for each system. With one GPU, a 33–119 fold increase in performance is achieved compared with the serial code while the use of two GPUs leads to a 69–287 fold improvement and three GPUs yield a 101–377 fold speedup. © 2015 Wiley Periodicals, Inc.

[1]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[2]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[3]  Gianni De Fabritiis,et al.  A survey of computational molecular science using graphics processing units , 2012 .

[4]  David J. Earl,et al.  Atomistic simulations of liquid crystal mixtures of alkoxy substituted phenylpyrimidines 2PhP and PhP14. , 2012, The Journal of chemical physics.

[5]  N. M. Cann,et al.  A molecular dynamics study of chirality transfer from chiral surfaces to nearby solvent. , 2009, The Journal of chemical physics.

[6]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[7]  Cecil Hastings,et al.  Approximations for digital computers , 1955 .

[8]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[9]  Manipulation of Liquid Crystals by an Orienting Force in MD Simulations , 2012 .

[10]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[11]  Andreas W. Götz,et al.  SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations , 2013, Comput. Phys. Commun..

[12]  M J Harvey,et al.  An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. , 2009, Journal of chemical theory and computation.

[13]  Shigeomi Chono,et al.  GPU-accelerated molecular dynamics simulation for study of liquid crystalline flows , 2010, J. Comput. Phys..

[14]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[15]  John E. Stone,et al.  Fast analysis of molecular dynamics trajectories with graphics processing units - Radial distribution function histogramming , 2011, J. Comput. Phys..

[16]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[17]  Ron Elber,et al.  Revisiting and parallelizing SHAKE , 2005 .

[18]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[19]  David N. LeBard Advancing simulations of biological materials: applications of coarse-grained models on graphics processing unit hardware , 2014 .

[20]  Wataru Shinoda,et al.  Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics. , 2011, Journal of chemical theory and computation.

[21]  Ron Elber,et al.  Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization. , 2012, Journal of chemical theory and computation.

[22]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[23]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[24]  Vijay S. Pande,et al.  Efficient nonbonded interactions for molecular dynamics on a graphics processing unit , 2010, J. Comput. Chem..

[25]  Berk Hess,et al.  A flexible algorithm for calculating pair interactions on SIMD architectures , 2013, Comput. Phys. Commun..

[26]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[27]  Enrico Macii,et al.  Acceleration of coarse grain molecular dynamics on GPU architectures , 2013, J. Comput. Chem..

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[30]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[31]  Surya Pratap Vanka,et al.  2012 Freeman Scholar Lecture: Computational Fluid Dynamics on Graphics Processing Units , 2013 .

[32]  Felix Höfling,et al.  Highly accelerated simulations of glassy dynamics using GPUs: Caveats on limited floating-point precision , 2009, Comput. Phys. Commun..

[33]  R. Lemieux Molecular recognition in chiral smectic liquid crystals: the effect of core-core interactions and chirality transfer on polar order. , 2007, Chemical Society reviews.

[34]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[36]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[37]  R. Lemieux Chirality transfer in ferroelectric liquid crystals. , 2001, Accounts of chemical research.

[38]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[39]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[40]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[41]  Ian J. Grimstead,et al.  GPU‐accelerated molecular mechanics computations , 2013, J. Comput. Chem..

[42]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[43]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[44]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[45]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[46]  José Ignacio Benavides Benítez,et al.  An optimized approach to histogram computation on GPU , 2012, Machine Vision and Applications.

[47]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[48]  Steven J. Plimpton,et al.  Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh , 2012, Comput. Phys. Commun..

[49]  Vijay S Pande,et al.  CCMA: A Robust, Parallelizable Constraint Method for Molecular Simulations. , 2010, Journal of chemical theory and computation.

[50]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[51]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[52]  Andrés Aguado,et al.  Ewald summation of electrostatic multipole interactions up to the quadrupolar level , 2003 .