Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa
暂无分享,去创建一个
[1] J. Sambrook,et al. Molecular Cloning: A Laboratory Manual , 2001 .
[2] Matthew Hobbs,et al. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein‐secretion apparatus: a general system for the formation of surface‐associated protein complexes , 1993, Molecular microbiology.
[3] A. Pugsley. The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.
[4] J. Mattick,et al. PilS and PilR, a two‐component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa , 1993, Molecular microbiology.
[5] P. Sansonetti,et al. MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins , 1993, Molecular microbiology.
[6] T. Meyer,et al. Production of Neisseria gonorrhoeae pili (fimbriae) in Pseudomonas aeruginosa , 1992, Journal of bacteriology.
[7] S. He,et al. The Pseudomonas syringae pv. syringae 61 hrpH product, an envelope protein required for elicitation of the hypersensitive response in plants , 1992, Journal of bacteriology.
[8] S. Lory,et al. Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa , 1992, Journal of bacteriology.
[9] J. Tommassen,et al. Protein secretion inPseudomonas aeruginosa , 1992 .
[10] J. Tommassen,et al. Protein secretion in Pseudomonas aeruginosa. , 1992, FEMS microbiology reviews.
[11] C. Boucher,et al. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. , 1992, Molecular plant-microbe interactions : MPMI.
[12] E. Boye,et al. Expression of the Escherichia coli dam gene , 1992, Molecular microbiology.
[13] S. Lory,et al. Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene , 1992, Journal of bacteriology.
[14] M. Marinus,et al. Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli , 1992, Journal of bacteriology.
[15] J M Ghuysen,et al. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins , 1991, Antimicrobial Agents and Chemotherapy.
[16] C. Hutchison,et al. A directed DNA sequencing strategy based upon Tn3 transposon mutagenesis: application to the ADE1 locus on Saccharomyces cerevisiae chromosome I. , 1991, Nucleic acids research.
[17] S. Goodgal,et al. Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae , 1991, Journal of bacteriology.
[18] G. Cornelis,et al. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica , 1991, Journal of bacteriology.
[19] J. Tomb,et al. Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. , 1991, Gene.
[20] J. Mattick,et al. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.
[21] J. Mattick,et al. Organization of the fimbrial gene region of Bacteroides nodosus: class I and class II strains , 1991, Molecular microbiology.
[22] J. Mattick,et al. Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serotypes A to I: class I and class II strains , 1991, Molecular microbiology.
[23] S. Lory,et al. Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa , 1991, Journal of bacteriology.
[24] S. He,et al. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[25] M. Bally,et al. Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO , 1991, Journal of bacteriology.
[26] S. Dharmsthiti,et al. A combined physical and genetic map of Pseudomonas aeruginosa PAO. , 1990, Journal of general microbiology.
[27] D. K. Willis,et al. A single oligonucleotide can be used to rapidly isolate DNA sequences flanking a transposon Tn5 insertion by the polymerase chain reaction. , 1990, Nucleic acids research.
[28] S. Lory,et al. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.
[29] J. Mattick,et al. Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa , 1990, Journal of bacteriology.
[30] C. d’Enfert,et al. Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. , 1989, The Journal of biological chemistry.
[31] D. Dubnau,et al. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon , 1989, Journal of bacteriology.
[32] C. E. Wilde,et al. Cloning and DNA sequence of the omc gene encoding the outer membrane protein-macromolecular complex from Neisseria gonorrhoeae , 1989, Infection and immunity.
[33] R. Simon,et al. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. , 1989, Gene.
[34] C. d’Enfert,et al. Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion , 1989, Journal of bacteriology.
[35] D. Lipman,et al. Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[36] J. Mattick,et al. Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa , 1987, Journal of bacteriology.
[37] J. Coggins,et al. The complete amino acid sequence of 3‐dehydroquinate synthase of Escherichia coli K 12 , 1986 .
[38] R. Konings,et al. Nucleotide sequence of the genome of Pf3, an IncP-1 plasmid-specific filamentous bacteriophage of Pseudomonas aeruginosa , 1985, Journal of virology.
[39] R. S. Hanson,et al. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol , 1985, Journal of bacteriology.
[40] B. Spratt,et al. The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding protein 1A and 1B of Escherichia coli K12. , 1985, European journal of biochemistry.
[41] C. Richardson,et al. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[42] A. Feinberg,et al. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.
[43] G. Bodey,et al. Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.
[44] P M van Wezenbeek,et al. Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. , 1980, Gene.
[45] D. E. Bradley. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.
[46] F. Sanger,et al. DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.
[47] P. Sparling,et al. Factors affecting genetic transformation of Neisseria gonorrhoeae , 1977, Journal of bacteriology.
[48] H. Schweizer,et al. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. , 1991, Gene.
[49] L. Frost,et al. The physiology and biochemistry of pili. , 1988, Advances in microbial physiology.
[50] J. Ottow. Ecology, physiology, and genetics of fimbriae and pili. , 1975, Annual review of microbiology.
[51] F. Studier. Bacteriophage T7. , 1972, Science.