Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa

Type 4 fimbriae are produced by a variety of pathogens, in which they appear to function in adhesion to epithelial cells, and in a form of surface translocation called twitching motility. Using transposon mutagenesis of Pseudomonas aeruginosa, we have identified a new locus required for fimbrial assembly. This locus contains the gene pilQ which encodes a 77 kDa protein with an N‐terminal hydro‐phobic signal sequence characteristic of secretory proteins, pilQ mutants lack the spreading colony morphology characteristic of twitching motility, are devoid of fimbriae, and are resistant to the fimbrial‐specific bacteriophage PO4. The pilQ gene was mapped to Spel fragment 2, which is located at 0–5 minutes on the P. aeruginosa PAO1 chromosome, and thus it is not closely linked to the previously characterized pilA‐D, pilS,R or pilT genes. The pilQ region also contains ponA, aroK and aroB‐like genes in an organization very similar to that of corresponding genes in Escherichia coli and Haemophilus influenzae. The predicted amino acid sequence of PilQ shows homology to the PulD protein of Kleb‐siella oxytoca and related outer membrane proteins which have been found in association with diverse functions in other species including protein secretion, DNA uptake and assembly of filamentous phage. PilQ had the highest overall homology to an outer membrane antigen from Neisseria gonorrhoeae, encoded by omc, that may fulfil the same role in type 4 fimbrial assembly in this species.

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  Matthew Hobbs,et al.  Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein‐secretion apparatus: a general system for the formation of surface‐associated protein complexes , 1993, Molecular microbiology.

[3]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[4]  J. Mattick,et al.  PilS and PilR, a two‐component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa , 1993, Molecular microbiology.

[5]  P. Sansonetti,et al.  MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins , 1993, Molecular microbiology.

[6]  T. Meyer,et al.  Production of Neisseria gonorrhoeae pili (fimbriae) in Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[7]  S. He,et al.  The Pseudomonas syringae pv. syringae 61 hrpH product, an envelope protein required for elicitation of the hypersensitive response in plants , 1992, Journal of bacteriology.

[8]  S. Lory,et al.  Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[9]  J. Tommassen,et al.  Protein secretion inPseudomonas aeruginosa , 1992 .

[10]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa. , 1992, FEMS microbiology reviews.

[11]  C. Boucher,et al.  hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. , 1992, Molecular plant-microbe interactions : MPMI.

[12]  E. Boye,et al.  Expression of the Escherichia coli dam gene , 1992, Molecular microbiology.

[13]  S. Lory,et al.  Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene , 1992, Journal of bacteriology.

[14]  M. Marinus,et al.  Identification of the gene (aroK) encoding shikimic acid kinase I of Escherichia coli , 1992, Journal of bacteriology.

[15]  J M Ghuysen,et al.  Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins , 1991, Antimicrobial Agents and Chemotherapy.

[16]  C. Hutchison,et al.  A directed DNA sequencing strategy based upon Tn3 transposon mutagenesis: application to the ADE1 locus on Saccharomyces cerevisiae chromosome I. , 1991, Nucleic acids research.

[17]  S. Goodgal,et al.  Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae , 1991, Journal of bacteriology.

[18]  G. Cornelis,et al.  Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica , 1991, Journal of bacteriology.

[19]  J. Tomb,et al.  Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. , 1991, Gene.

[20]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[21]  J. Mattick,et al.  Organization of the fimbrial gene region of Bacteroides nodosus: class I and class II strains , 1991, Molecular microbiology.

[22]  J. Mattick,et al.  Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serotypes A to I: class I and class II strains , 1991, Molecular microbiology.

[23]  S. Lory,et al.  Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[24]  S. He,et al.  Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Bally,et al.  Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO , 1991, Journal of bacteriology.

[26]  S. Dharmsthiti,et al.  A combined physical and genetic map of Pseudomonas aeruginosa PAO. , 1990, Journal of general microbiology.

[27]  D. K. Willis,et al.  A single oligonucleotide can be used to rapidly isolate DNA sequences flanking a transposon Tn5 insertion by the polymerase chain reaction. , 1990, Nucleic acids research.

[28]  S. Lory,et al.  Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.

[29]  J. Mattick,et al.  Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa , 1990, Journal of bacteriology.

[30]  C. d’Enfert,et al.  Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. , 1989, The Journal of biological chemistry.

[31]  D. Dubnau,et al.  Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon , 1989, Journal of bacteriology.

[32]  C. E. Wilde,et al.  Cloning and DNA sequence of the omc gene encoding the outer membrane protein-macromolecular complex from Neisseria gonorrhoeae , 1989, Infection and immunity.

[33]  R. Simon,et al.  New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. , 1989, Gene.

[34]  C. d’Enfert,et al.  Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion , 1989, Journal of bacteriology.

[35]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Mattick,et al.  Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa , 1987, Journal of bacteriology.

[37]  J. Coggins,et al.  The complete amino acid sequence of 3‐dehydroquinate synthase of Escherichia coli K 12 , 1986 .

[38]  R. Konings,et al.  Nucleotide sequence of the genome of Pf3, an IncP-1 plasmid-specific filamentous bacteriophage of Pseudomonas aeruginosa , 1985, Journal of virology.

[39]  R. S. Hanson,et al.  Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol , 1985, Journal of bacteriology.

[40]  B. Spratt,et al.  The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding protein 1A and 1B of Escherichia coli K12. , 1985, European journal of biochemistry.

[41]  C. Richardson,et al.  A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[43]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[44]  P M van Wezenbeek,et al.  Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. , 1980, Gene.

[45]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[46]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Sparling,et al.  Factors affecting genetic transformation of Neisseria gonorrhoeae , 1977, Journal of bacteriology.

[48]  H. Schweizer,et al.  Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. , 1991, Gene.

[49]  L. Frost,et al.  The physiology and biochemistry of pili. , 1988, Advances in microbial physiology.

[50]  J. Ottow Ecology, physiology, and genetics of fimbriae and pili. , 1975, Annual review of microbiology.

[51]  F. Studier Bacteriophage T7. , 1972, Science.