Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes

We combine integer linear programming and recent advances in Monadic Second-Order model checking to obtain two new algorithmic meta-theorems for graphs of bounded vertex-cover. The first one shows that the model checking problem for cardMSO1, an extension of the well-known Monadic Second-Order logic by the addition of cardinality constraints, can be solved in FPT time parameterized by vertex cover. The second meta-theorem shows that the MSO partitioning problems introduced by Rao can also be solved in FPT time with the same parameter.

[1]  Robert Ganian,et al.  Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics , 2011, IPEC.

[2]  Robert Ganian,et al.  When Trees Grow Low: Shrubs and Fast MSO1 , 2012, International Symposium on Mathematical Foundations of Computer Science.

[3]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[4]  Robert Malcolm Macgregor,et al.  On partitioning a graph: a theoretical and empirical study. , 1978 .

[5]  Jon Rigelsford,et al.  Scheduling Computer and Manufacturing Processes 2nd Edition , 2002 .

[6]  Konstantin Andreev,et al.  Balanced Graph Partitioning , 2004, SPAA '04.

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Michael R. Fellows,et al.  What Makes Equitable Connected Partition Easy , 2009, IWPEC.

[9]  Michael Lampis,et al.  Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.

[10]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[11]  Luca Foschini,et al.  Balanced Partitions of Trees and Applications , 2012, Algorithmica.

[12]  Michaël Rao,et al.  MSOL partitioning problems on graphs of bounded treewidth and clique-width , 2007, Theor. Comput. Sci..

[13]  Sajal K. Das,et al.  Conflict-free star-access in parallel memory systems , 2006, J. Parallel Distributed Comput..

[14]  W. Marsden I and J , 2012 .

[15]  Jirí Fiala,et al.  Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..

[16]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[17]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[18]  Saket Saurabh,et al.  Parameterized Algorithms for Boxicity , 2010, ISAAC.

[19]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[20]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.