Parafermionization, bosonization, and critical parafermionic theories

[1]  D. Gaiotto,et al.  Orbifold groupoids , 2020, Journal of High Energy Physics.

[2]  Justin Kulp Two more fermionic minimal models , 2020, Journal of High Energy Physics.

[3]  Kimyeong M. Lee,et al.  Fermionic rational conformal field theories and modular linear differential equations , 2020, 2010.12392.

[4]  Statistics of the Two-Dimensional Ferromagnet , 2020, Master of Modern Physics.

[5]  I. Runkel,et al.  Fermionic CFTs and classifying algebras , 2020, 2001.05055.

[6]  Yuan Yao,et al.  Bosonization with a background U(1) gauge field , 2019, Physical Review B.

[7]  D. Tong,et al.  A web of 2d dualities: ${\bf Z}_2$ gauge fields and Arf invariants , 2019, SciPost Physics.

[8]  A. Kapustin,et al.  Fermionic SPT phases in higher dimensions and bosonization , 2017, 1701.08264.

[9]  E. Berg,et al.  Classification of topological phases of parafermionic chains with symmetries , 2017, 1701.01133.

[10]  L. Mazza,et al.  Topological Phases of Parafermions: A Model with Exactly Solvable Ground States. , 2016, Physical review letters.

[11]  T. Hughes,et al.  Parafermionic Wires at the Interface of Chiral Topological States. , 2016, Physical review letters.

[12]  N. Regnault,et al.  Parafermionic phases with symmetry breaking and topological order , 2015, 1506.03455.

[13]  Jason Alicea,et al.  Topological Phases with Parafermions: Theory and Blueprints , 2015, 1504.02476.

[14]  M. Cheng,et al.  Criticality in translation-invariant parafermion chains , 2014, 1407.3790.

[15]  T. Hughes,et al.  Anyonic symmetries and topological defects in Abelian topological phases: An application to the A D E classification , 2014, 1403.6478.

[16]  Matthew P. A. Fisher,et al.  Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure , 2013, 1307.4403.

[17]  Maissam Barkeshli,et al.  Classification of Topological Defects in Abelian Topological States , 2013, 1304.7579.

[18]  T. Quella,et al.  Topological and symmetry broken phases of ZN parafermions in one dimension , 2013, 1303.5587.

[19]  E. Berg,et al.  Topological phases in gapped edges of fractionalized systems , 2013, 1303.2194.

[20]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[21]  A. Vaezi,et al.  Fractional topological superconductor with fractionalized Majorana fermions , 2012, 1204.6245.

[22]  X. Wen Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons , 2012, 1210.1281.

[23]  P. Fendley Parafermionic edge zero modes in Zn-invariant spin chains , 2012, 1209.0472.

[24]  M. Cheng Superconducting Proximity Effect on the Edge of Fractional Topological Insulators , 2012, 1204.6084.

[25]  Gil Refael,et al.  Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states , 2012, 1204.5733.

[26]  Frank Pollmann,et al.  Symmetry protection of topological phases in one-dimensional quantum spin systems , 2009, 0909.4059.

[27]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[28]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[29]  J. Cardy Conformal Field Theory and Statistical Mechanics , 2008, 0807.3472.

[30]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[31]  M. Lavagna Quantum phase transitions , 2001, cond-mat/0102119.

[32]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[33]  P. Ruelle,et al.  Discrete symmetries of unitary minimal conformal theories , 1998, hep-th/9803129.

[34]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[35]  Akishi Kato Classification of Modular Invariant Partition Functions in Two Dimensions , 1987 .

[36]  Zongan Qiu,et al.  Modular invariant partition functions for parafermionic field theories , 1987 .

[37]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[38]  J. Zuber Discrete Symmetries of Conformal Theories , 1986 .

[39]  V. Fateev,et al.  Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems , 1985 .

[40]  L. Kadanoff,et al.  Disorder variables and para-fermions in two-dimensional statistical mechanics , 1980 .

[41]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[42]  John Corcoran,et al.  String theory , 1974, Journal of Symbolic Logic.

[43]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .