Cyclopentadienyl Rhenium Complexes

[1]  J. Gladysz,et al.  Mechanism of isomerization of rhenium alkylidene complexes [(.eta.5-C5H5)Re(NO)(PPh3)(:CRCHR'R'')]+X- to alkene complexes [(.eta.5-C5H5)Re(NO)(PPh3)(RHC:CR'R'')]+X-: an organometallic Wagner-Meerwein-type rearrangement , 1991 .

[2]  J. Gladysz,et al.  A new catalyst for the epimerization of secondary alcohols: carbon-hydrogen bond activation in the rhenium alkoxide complexes (.eta.5-C5R5)Re(NO)(PPh3)(OCHRR') , 1991 .

[3]  J. Gladysz,et al.  Synthesis, structure, and dynamic behavior of rhenium sulfide and sulfoxide complexes of the formula [(.eta.5-C5H5)Re(NO)(L)(XRR')]+X'- (X = S, SO) , 1991 .

[4]  A. Igau,et al.  Reactions of the neohexyl iodide complex [(.eta.5-C5H5)Re(NO)(PPh3)(ICH2CH2C(CH3)3)]+BF4- and nucleophiles: stereochemistry of carbon-iodine bond cleavage in highly accelerated SN2 reactions , 1991 .

[5]  J. Gladysz,et al.  Synthesis, structure, and reactivity of chiral rhenium alkyne complexes of the formula [(.eta.5-C5H5)Re(NO)(PPh3)(RC.tplbond.CR')]+BF4- , 1991 .

[6]  J. Gladysz,et al.  Synthesis, Structure, and Reactivity of Chiral Rhenium Cycloalkene Complexes of the Formula ; Facile Vinylic Deprotonation of a Coordinated Alkene , 1991 .

[7]  J. Gladysz,et al.  Synthesis, structure, and reactivity of functionalized germyl complexes of the formula (.eta.5-C5H5)Re(NO)(PPh3)(GePh2X): equilibria involving the germylene complex [(.eta.5-C5H5)Re(NO)(PPh3)(:GePh2)]+ TfO- , 1991 .

[8]  J. Gladysz,et al.  Synthesis and Reactivity of Functionalized Dimethylsilyl Complexes of the Formula (η5‐C5H5)Re(NO)(PPh3)(SiMe2X); New Base‐Stabilized Silylene Complexes, Novel Lewis Acid Adducts, and Evidence for Base‐Free Silylene Complexes , 1991 .

[9]  Dennis M. Dalton,et al.  Selective activation of one methyl ketone enantioface via .sigma.-binding to a chiral transition-metal template: synthesis, structure, and reactivity of rhenium ketone complexes [(.eta.5-C5H5)Re(NO)(PPh3)(.eta.1-O:C(CH3)R)]+X- , 1990 .

[10]  J. Gladysz,et al.  Thermodynamic Aldehyde Enantioface Binding Selectivities in Complexes of Chiral Metal Fragments; Mechanism of Interconversion of Diastereomeric π‐Aldehyde Complexes [(η5‐C5H5)Re(NO)(PPh3)(η2‐OCHAr)]BF4 , 1990 .

[11]  J. Gladysz,et al.  π/σ Equilibria in Metal Complexes of Organic Carbonyl Compounds; Synthesis and Structure of Chiral Rhenium Complexes [(η5‐C5H5)Re(NO)(PPh3)(O CHAr)]X , 1990 .

[12]  J. Gladysz,et al.  Generation and reactivity of the chiral rhenium chlorobenzene complex [(η5-C5H5)Re(NO)(PPh3)(ClC6H5)]+BF−4: an improved functional equivalent of the chiral Lewis acid [(η5-C5H5)Re(NO)(PPh3)]+BF−4 , 1990 .

[13]  J. Gladysz,et al.  A new carbon-hydrogen bond activation reaction: stereospecific abstraction of vinylic protons from rhenium alkene complexes [(.eta.5-C5H5)Re(NO)(PPh3)(H2C:CHR)]+ BF4- by the base tert-BuO-K+ , 1990 .

[14]  J. Gladysz,et al.  Reactions of the rhenium cyanomethyl complex (.eta.5-C5H5)Re(NO)(PPh3)(CH2CN) and ylide complex [(.eta.5-C5H5)Re(NO)(PPh3)(CH2P(p-tol)3))]+PF6- with n-BuLi/TMEDA: generation, stereospecific alkylation, and basicity of transition-metal-substituted carbanions and ylides , 1990 .

[15]  Whitney W. Smith,et al.  Synthesis and Reactivity of Chiral Rhenium Alcohol Complexes of the Formula [(η5‐C5H5)Re(NO)(PPh3)(ROH)]⊕BF4⊖ , 1990 .

[16]  J. Gladysz,et al.  Selective binding and activation of one aldehyde enantioface by a chiral transition-metal Lewis acid: synthesis, structure, and reactivity of rhenium aldehyde complexes [(.eta.5-C5H5)Re(NO)(PPh3)(.eta.2-O:CHR)]+X- , 1990 .

[17]  J. Gladysz,et al.  Synthesis, structure, and reactivity of chiral rhenium alkene complexes of the formula [(.eta.5-C5H5)Re(NO)PPh3)(H2C:CHR)]+ X- , 1990 .

[18]  J. Gladysz,et al.  Mechanism of equilibration of diastereomeric rhenium amide complexes of the formula (.eta.5-C5H5)Re(NO)(PPh3)(NHCHRR'): rhenium versus carbon epimerization , 1990 .

[19]  J. Gladysz,et al.  Synthesis, structure, and reactivity of the chiral rhenium phenyl complex (.eta.5-C5H5)Re(NO)(PPh3)(C6H5) , 1990 .

[20]  J. Gladysz,et al.  Synthesis and reactivity of chiral rhenium amine and amide complexes of the formulas [(.eta.5-C5H5)Re(NO)PPh3)(NHRR')]+TfO- and (.eta.5C5H5)Re(NO)(PPh3)NRR') , 1990 .

[21]  J. Gladysz,et al.  Syntheses and structures of σ-pyridine, quinoline, and isoquinoline complexes of the formula [(η5-C5H5)Re(NO)(PPh3)(NCxHy)]+ CF3SO3− , 1990 .

[22]  J. Gladysz,et al.  Optical resolution and absolute configuration of the chiral pentamethylcyclopentadienylrhenium carbonyl complex [(η5-C5Me5)Re(NO)(PPh3)(CO)]+ BF4− , 1990 .

[23]  J. Gladysz,et al.  Synthesis and properties of chiral rhenium ether complexes of the formula [(.eta.5-C5H5)Re(NO)(PPh3)(OR2)]+ X- , 1990 .

[24]  J. Gladysz,et al.  Regiospecific, diastereospecific and enantiospecific nucleophilic additions to chiral monosubstituted alkene complexes of the formula [(η5-C5H5)Re(NO)(PPh3)(H2CCHR)]+ BF4− , 1990 .

[25]  A. Arif,et al.  Synthesis and reactivity of functionalized rhenium phosphido complexes (.eta.5-C5H5)Re(NO)(PPh3)(PXX'): an unusual carbon tetrachloride 1,3-addition leading to an exo-substituted .eta.4-cyclopentadiene complex , 1989 .

[26]  J. Gladysz,et al.  Synthesis and structure of chiral rhenium allyl complexes of the formula (.eta.5-C5H5)Re(NO)(PPh3)(CH2C(R') = CHR) , 1989 .

[27]  J. Gladysz,et al.  Synthesis, structure, and reactivity of stable alkyl and aryl iodide complexes of the formula [(η5-C5H5)Re(NO)(PPh3)(IR)] +BF4 - , 1989 .

[28]  J. Gladysz,et al.  Synthesis, structure, and reactivity of bridging halide complexes of the formula [(.eta.5-C5H5)Re(NO)(PPh3)]2X+ BF4-. Preferential binding of one enantiomer of halide complexes (.eta.5-C5H5)Re(NO)(PPh3)(X) by the chiral Lewis acid [(.eta.5-C5H5)Re(NO)(PPh3)]+ , 1989 .

[29]  J. Gladysz,et al.  Stereoselective addition of cyanide ion to chiral rhenium π-aldehyde complexes of the formulae [(η5-C5H5)Re(NO)(PPh3)(η2-OCHR)]+ BF4− , 1989 .

[30]  J. Gladysz,et al.  Synthetic approaches to the chiral, pyramidal, transition-metal Lewis acid [(.eta.5-C5H5)Re(NO)(PPh3)]+X-. Generation, characterization, and reactions of a dichloromethane adduct , 1989 .

[31]  J. Gladysz,et al.  Generation of the dichloromethane complex [(η5-C5Me5) Re (NO) (PPh3) (ClCH2Cl)]+ BF4−, and its conversion to the oxidative addition product [(η5-C5Me5) Re (NO) (PPh3) (Cl) (CH2Cl)]+ BF4- , 1988 .

[32]  W. Herrmann High Oxidation State Organometallic Chemistry, A Challenge—the Example of Rhenium , 1988 .

[33]  C. S. Young,et al.  Synthesis and reactivity of functionalized rhenium silyl complexes (.eta.5-C5H5)Re(NO)(PPh3)(SiR2X). Anionic rearrangements leading to the disilametallacycle [cyclic] [.eta.5-C5H4Si(CH3)2]Re(NO)(PPh3)[Si(CH3)2] , 1988 .

[34]  J. Gladysz,et al.  Divergent kinetic and thermodynamic acidity in organotransition-metal hydride complexes: synthesis, structure, and reactivity of the rhenium anion of Li+ [(.eta.-C5H5)Re(NO)(PPh3)]-. , 1988, Journal of the American Chemical Society.

[35]  J. Gladysz,et al.  Synthesis, structure, and reactions of chiral rhenium vinylidene and acetylide complexes of the formula [(.eta.5-C5H5)Re(NO)(PPh3)(X)]n+. Vinylidene complexes that are formed by stereospecific C.beta. electrophilic attack, exist as two Re=C=C geometric isomers, and undergo stereospecific C.alpha. nu , 1988, Journal of the American Chemical Society.

[36]  S. Georgiou,et al.  Synthesis, structure, dynamic behavior, and reactivity of rhenium phosphido complexes (.eta.5-C5H5)Re(NO)(PPh3)(PR2): the gauche effect in transition-metal chemistry , 1988 .

[37]  S. Georgiou,et al.  Synthesis, structure, and alkylation of chiral vinylrhenium complexes (.eta.5-C5H5)Re(NO)(PPh3)(CX:CHR) (X = H, OCH3). A mechanistic study of 1,3-asymmetric induction from rhenium to carbon , 1987 .

[38]  J. Gladysz,et al.  New method for the activation of metal-bound methyl groups. Oxidative disproportionation to coordinated ethylene and methane , 1987 .

[39]  J. Gladysz,et al.  A Novel Heterobimetallic Asymmetric Hydrogenation Catalyst Based Upon a Chiral Rhenium Template Containing Two Phosphido Substituents , 1987 .

[40]  J. Gladysz,et al.  Synthesis, structure, and reactivity of transition metal/main group metal bridging carboxylate complexes of the formula (.eta.5-C5H5)Re(NO)(PPh3)(CO2MLn) (M = Li, K, Ge, Sn, Pb) , 1987 .

[41]  Motomasa Kobayashi,et al.  A versatile new synthesis of organic compounds with chiral methyl groups: stereochemistry of protolytic rhenium-carbon bond cleavage in chiral alkyl complexes (.eta.5-C5H5)Re(NO)(PPh3)(R) , 1987 .

[42]  J. Gladysz,et al.  New mechanistic probes of hydride abstraction from rhenium-alkyl complexes (.eta.5-C5H5)Re(NO)(PPh3)(R) by Ph3C+ PF6-. Evidence for initial electron transfer , 1987 .

[43]  J. Gladysz,et al.  Metal complexes of sulfur-containing ligands. Synthesis and properties of a series of rhenium-substituted sulfonium salts [(.eta.5-C5H5)Re(NO)(PPh3)(CH2)]nS+(CH3)3-n(n = 1-3) , 1986 .

[44]  S. Georgiou,et al.  Synthesis, structure, and reactivity of the thioformaldehyde complex [(.eta.5-C5H5)Re(NO)(PPh3)(.eta.2-H2C:S)]+ PF6- , 1986 .

[45]  J. Gladysz,et al.  Deprotonation and anionic rearrangements of organometallic compounds. 5. Kinetic vs. thermodynamic deprotonation in reactions of cyclopentadienylrhenium acyl and alkyl complexes with strong bases , 1986 .

[46]  J. Gladysz,et al.  Cleavage of the rhenium-methyl bond of (.eta.-C5H5)Re(NO)(PPh3)(CH3) by protic and halogen electrophiles: stereochemistry at rhenium , 1984 .

[47]  W. Kiel,et al.  Reactions of benzylrhenium complexes (.eta.5-C5H5)Re(NO)(L)(CH2Ar) with Ph3C+PF6. Analysis of the Re-C.alpha. rotamers involved in .alpha.-hydride abstraction , 1984 .

[48]  J. Gladysz,et al.  Synthesis and chemistry of chiral rhenium acyls (.eta.-C5H5)Re(NO)(PPh3)(COR) , 1983 .

[49]  C. Knobler,et al.  Syntheses, properties, and x-ray crystal structures of stable methylidene complexes of the formula [(.eta.-C5Me5)Re(NO)(L)(:CH2)]+ PF6- , 1983 .

[50]  W. Kiel,et al.  Mechanism of coupling of methylidene to ethylene at a homogeneous (triphenylphosphine)nitrosyl(.eta.-cyclopentadienyl)rhenium(+) [(.eta.-C5H5)Re(NO)(PPh3)]+ center. Remarkable enantiomer self-recognition , 1983 .

[51]  W. Kiel,et al.  Regiospecific and stereospecific reactions of triphenylmethyl hexafluorophosphate with rhenium alkyls (.eta.-C5H5)Re(NO)(PPh3)(R). .alpha.- vs. .beta.-Hydride abstraction , 1983 .

[52]  W. Kiel,et al.  Synthesis and electrophile-induced disproportionation of the neutral formyl triphenylphosphinenitrosyl-.eta.-cyclopentadienylrhenium formyl ((.eta.-C5H5)Re(NO)(PPh3)(CHO)) , 2002 .

[53]  J. Gladysz,et al.  Synthesis, optical resolution, and absolute configuration of pseudotetrahedral organorhenium complexes (.eta.-C5H5)Re(NO)(PPh3)(X) , 1982 .

[54]  W. Kiel,et al.  Synthesis and properties of [(.eta.-C5H5)Re(NO)(PPh3)(:CHC6H5)]+PF6-: a benzylidene complex that is formed by a stereospecific .alpha.-hydride abstraction, exists as two geometric isomers, and undergoes stereospecific nucleophilic attack , 1982 .

[55]  W. Graham,et al.  Stepwise reduction of coordinated carbon monoxide , 1982 .

[56]  R. King,et al.  Organometallic Chemistry of the Transition Metals. XXXI. Stereoisomerism in Cyclopentadienylrhenium(II1) Derivatives132 , 1976 .

[57]  E. Fischer,et al.  Notizen: Cyclopentadienyl-rhenium-dicarbonyl-nitrosyl-Kation , 1968 .

[58]  E. Fischer,et al.  Über aromatenkomplexe von metallen : LXXIII. Acylierungen an cyclopentadienyl-rhenium-tricarbonyl und cyclopentadienyl-technetium-tricarbonyl , 1963 .