Pressure-responsive curvature change of a "rigid" geodesic ligand in a (3,24)-connected mesoporous metal-organic framework.

A (3,24)-connected mesoporous metal-organic framework, PCN-69, was synthesized by linking a hexatopic ligand btti with dicopper paddlewheel clusters. This material has rigid connectivity but a flexible framework, which has been attributed to a curvature change of the ligand.

[1]  Sihai Yang,et al.  A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. , 2011, Chemical communications.

[2]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[3]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[4]  Qiang Xu,et al.  High-connected mesoporous metal-organic framework. , 2010, Chemical communications.

[5]  Gérard Férey,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[6]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[7]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[8]  Alexander J. Blake,et al.  Metal-organic polyhedral frameworks: high h(2) adsorption capacities and neutron powder diffraction studies. , 2010, Journal of the American Chemical Society.

[9]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[10]  Jin-soo Seo,et al.  Discrimination of small gas molecules through adsorption: reverse selectivity for hydrogen in a flexible metal-organic framework. , 2009, Inorganic chemistry.

[11]  Myoung Soo Lah,et al.  Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability. , 2009, Chemical communications.

[12]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[13]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[14]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[15]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[16]  Xiang Lin,et al.  Exceptionally high H2 storage by a metal-organic polyhedral framework. , 2009, Chemical communications.

[17]  Dan Zhao,et al.  The current status of hydrogen storage in metal–organic frameworks , 2008 .

[18]  Myoung Soo Lah,et al.  A designed metal-organic framework based on a metal-organic polyhedron. , 2008, Chemical communications.

[19]  Tatsuo C. Kobayashi,et al.  Kinetic gate-opening process in a flexible porous coordination polymer. , 2008, Angewandte Chemie.

[20]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[21]  A. Matzger,et al.  A crystalline mesoporous coordination copolymer with high microporosity. , 2008, Angewandte Chemie.

[22]  Young Kwan Park,et al.  Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. , 2007, Angewandte Chemie.

[23]  Sean Parkin,et al.  A mesoporous metal-organic framework with permanent porosity. , 2006, Journal of the American Chemical Society.

[24]  P. Balbuena,et al.  Investigation of corannulene for molecular hydrogen storage via computational chemistry and experimentation. , 2006, The journal of physical chemistry. B.

[25]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[26]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[27]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[28]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[29]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[30]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[31]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[32]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[33]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[34]  Dan Zhao,et al.  A stepwise transition from microporosity to mesoporosity in metal–organic frameworks by thermal treatment , 2011 .

[35]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.