Optimization of silicon technology for the IBM System z9

IBM 90-nm silicon-on-insulator (SOI) technology was used for the key chips in the System z9TM processor chipset. Along with system design, optimization of some critical features of this technology enabled the z9TM to achieve double the system performance of the previous generation. These technology improvements included logic and SRAM FET optimization, mask fabrication, lithography and wafer processing, and interconnect technology. Reliability improvements such as SRAM optimization and burn-in reliability screen are also described.

[1]  Edward W. Conrad,et al.  Model-based verification for first time right manufacturing , 2005, SPIE Advanced Lithography.

[2]  Wei Jin,et al.  High performance 50 nm CMOS devices for microprocessor and embedded processor core applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[3]  M.B. Ketchen,et al.  Ring oscillators for CMOS process tuning and variability control , 2006, IEEE Transactions on Semiconductor Manufacturing.

[4]  Lars Liebmann,et al.  TCAD development for lithography resolution enhancement , 2001, IBM J. Res. Dev..

[5]  Baoqin Chen,et al.  Proximity effect in electron beam lithography , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[6]  J. Gill,et al.  Reliability, yield, and performance of a 90 nm SOI/Cu/SiCOH technology , 2004, Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729).

[7]  Frank E. Abboud,et al.  Evaluation of OPC mask printing with a raster scan pattern generator , 2002, SPIE Advanced Lithography.

[8]  M. Agostinelli,et al.  6-T cell circuit dependent GOX SBD model for accurate prediction of observed vccmin test voltage dependency , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[9]  J. Gill,et al.  Comprehensive reliability evaluation of a 90 nm CMOS technology with Cu/PECVD low-k BEOL , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[10]  S.K. Iyer,et al.  Electrically programmable fuse (eFUSE) using electromigration in silicides , 2002, IEEE Electron Device Letters.

[11]  Jennifer Yario 2005 top Fab: IBM , 2005 .

[12]  S. Narasimha,et al.  A high performance 90nm SOI technology with 0.992 /spl mu/m2 6T-SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[13]  S. Narasimha,et al.  A high performance 0.13 /spl mu/m SOI CMOS technology with Cu interconnects and low-k BEOL dielectric , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[14]  H. Kimura,et al.  RTA-Driven Intra-Die Variations in Stage Delay, and Parametric Sensitivities for 65nm Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[15]  H. E. Hamilton Thermal aspects of burn-in of high power semiconductor devices , 2002, ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258).

[16]  G. Burbach,et al.  Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[17]  Gregory A. Northrop,et al.  IBM eServer z900 high-frequency microprocessor technology, circuits, and design methodology , 2002, IBM J. Res. Dev..

[18]  P. Roper,et al.  Full copper wiring in a sub-0.25 /spl mu/m CMOS ULSI technology , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[19]  G. Owen,et al.  Proximity effect correction for electron beam lithography by equalization of background dose , 1983 .

[20]  Edward J. Nowak,et al.  Maintaining the benefits of CMOS scaling when scaling bogs down , 2002, IBM J. Res. Dev..

[21]  C.-C. Yang,et al.  Chip-to-package interaction for a 90 nm Cu / PECVD low-k technology , 2004, Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729).