Knowledge-based elastic potentials for docking drugs or proteins with nucleic acids.

Elastic ellipsoidal functions defined by the observed hydration patterns around the DNA bases provide a new basis for measuring the recognition of ligands in the grooves of double-helical structures. Here a set of knowledge-based potentials suitable for quantitative description of such behavior is extracted from the observed positions of water molecules and amino acid atoms that form hydrogen bonds with the nitrogenous bases in high resolution crystal structures. Energies based on the displacement of hydrogen-bonding sites on drugs in DNA-crystal complexes relative to the preferred locations of water binding around the heterocyclic bases are low, pointing to the reliability of the potentials and the apparent displacement of water molecules by drug atoms in these structures. The validity of the energy functions has been further examined in a series of sequence substitution studies based on the structures of DNA bound to polyamides that have been designed to recognize the minor-groove edges of Watson-Crick basepairs. The higher energies of binding to incorrect sequences superimposed (without conformational adjustment or displacement of polyamide ligands) on observed high resolution structures confirm the hypothesis that the drug subunits associate with specific DNA bases. The knowledge-based functions also account satisfactorily for the measured free energies of DNA-polyamide association in solution and the observed sites of polyamide binding on nucleosomal DNA. The computations are generally consistent with mechanisms by which minor-groove binding ligands are thought to recognize DNA basepairs. The calculations suggest that the asymmetric distributions of hydrogen-bond-forming atoms on the minor-groove edge of the basepairs may underlie ligand discrimination of G.C from C.G pairs, in addition to the commonly believed role of steric hindrance. The analysis of polyamide-bound nucleosomal structures reveals other discrepancies in the expected chemical design, including unexpected contacts to DNA and modified basepair targets of some ligands. The ellipsoidal potentials thus appear promising as a mathematical tool for the study of drug- and protein-DNA interactions and for gaining new insights into DNA-binding mechanisms.

[1]  H M Berman,et al.  A standard reference frame for the description of nucleic acid base-pair geometry. , 2001, Journal of molecular biology.

[2]  D. Goodsell,et al.  Crystal structure of C-T-C-T-C-G-A-G-A-G. Implications for the structure of the Holliday junction. , 1995, Biochemistry.

[3]  M. Sundaralingam,et al.  Structure of the side-by-side binding of distamycin to d(GTATATAC)2. , 1999, Acta crystallographica. Section D, Biological crystallography.

[4]  M. Sundaralingam,et al.  X-ray structures of the B-DNA dodecamer d(CGCGTTAACGCG) with an inverted central tetranucleotide and its netropsin complex. , 1995, Acta crystallographica. Section D, Biological crystallography.

[5]  E Westhof,et al.  Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes. , 2001, Journal of molecular biology.

[6]  Stephen Neidle,et al.  DNA minor groove recognition of a non-self-complementary AT-rich sequence by a tris-benzimidazole ligand , 1999, Nucleic Acids Res..

[7]  H R Drew,et al.  Ordered water structure around a B-DNA dodecamer. A quantitative study. , 1983, Journal of molecular biology.

[8]  D C Rees,et al.  Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove. , 2000, Journal of molecular biology.

[9]  H R Drew,et al.  Structure of a B-DNA dodecamer: conformation and dynamics. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Luger,et al.  Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. , 2003, Journal of molecular biology.

[11]  G. Baudoux,et al.  A database study of intermolecular NH⋯O hydrogen bonds for carboxylates, sulfonates and monohydrogen phosphonates , 1995 .

[12]  D. Goodsell,et al.  Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. , 1984, Journal of molecular biology.

[13]  A. Gavezzotti,et al.  Geometry of the Intermolecular X-H.cntdot..cntdot..cntdot.Y (X, Y = N, O) Hydrogen Bond and the Calibration of Empirical Hydrogen-Bond Potentials , 1994 .

[14]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[15]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[16]  A. Rich,et al.  A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[18]  D. Rees,et al.  Structural basis for G•C recognition in the DNA minor groove , 1998, Nature Structural Biology.

[19]  A. Rich,et al.  Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. , 2011, Biochemistry.

[20]  D. Goodsell Sequence recognition of DNA by lexitropsins. , 2001, Current medicinal chemistry.

[21]  V. Zhurkin,et al.  Anisotropic flexibility of DNA and the nucleosomal structure. , 1979, Nucleic acids research.

[22]  K. Luger,et al.  Sequence-specific recognition of DNA in the nucleosome by pyrrole-imidazole polyamides. , 2001, Journal of molecular biology.

[23]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[24]  K. Trueblood,et al.  THE CRYSTAL AND MOLECULAR STRUCTURE OF D(+)-BARIUM URIDINE-5'-PHOSPHATE. , 1965, Acta crystallographica.

[25]  U. Singh,et al.  A water dimer potential based on ab initio calculations using Morokuma component analyses , 1985 .

[26]  D. Wemmer Ligands recognizing the minor groove of DNA: Development and applications , 1999, Biopolymers.

[27]  H M Berman,et al.  A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. , 1993, Biophysical journal.

[28]  D S Goodsell,et al.  Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. , 1997, Structure.

[29]  Olga Kennard,et al.  DNA conformation is determined by economics in the hydration of phosphate groups , 1986, Nature.

[30]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[31]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[32]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[33]  W. Olson,et al.  A-form conformational motifs in ligand-bound DNA structures. , 2000, Journal of molecular biology.

[34]  A. R. Srinivasan,et al.  Geometric parameters in nucleic acids: Nitrogenous bases , 1996 .

[35]  J. Trauger,et al.  Recognition of DNA by designed ligands at subnanomolar concentrations , 1996, Nature.

[36]  P. Dervan,et al.  Effects of the A.T/T.A degeneracy of pyrrole--imidazole polyamide recognition in the minor groove of DNA. , 1996, Biochemistry.

[37]  H. Berman,et al.  Hydration of the phosphate group in double-helical DNA. , 1998, Biophysical journal.

[38]  H R Drew,et al.  Structure of a B-DNA dodecamer. III. Geometry of hydration. , 1981, Journal of molecular biology.

[39]  N. Seeman,et al.  Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. , 1972, Journal of molecular biology.

[40]  S. A. Salisbury,et al.  Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C) , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  H M Berman,et al.  Hydration of the DNA bases is local. , 1995, Biophysical journal.

[42]  C. Foces-Foces,et al.  N⋯Nsp2 hydrogen interactions in organic crystals , 1990 .

[43]  R. Bürli,et al.  Sequence-specific DNA recognition by polyamides. , 1999, Current opinion in chemical biology.

[44]  P. Dervan,et al.  On the pairing rules for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. , 1997, Chemistry & biology.

[45]  J G Pelton,et al.  Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Ramakrishnan,et al.  Crystal structures of the side-by-side binding of distamycin to AT-containing DNA octamers d(ICITACIC) and d(ICATATIC). , 1997, Journal of molecular biology.

[47]  D. Wemmer,et al.  Targeting the minor groove of DNA. , 1997, Current opinion in structural biology.

[48]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[49]  G Klebe,et al.  On the prediction of binding properties of drug molecules by comparative molecular field analysis. , 1993, Journal of medicinal chemistry.

[50]  B. Ramakrishnan,et al.  Binding of two distamycin A molecules in the minor groove of an alternating B–DNA duplex , 1994, Nature Structural Biology.

[51]  M Karplus,et al.  HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site , 1994, Proteins.

[52]  H M Berman,et al.  An analysis of the relationship between hydration and protein-DNA interactions. , 1998, Biophysical journal.

[53]  Valerie J. Gillet,et al.  SPROUT: A program for structure generation , 1993, J. Comput. Aided Mol. Des..

[54]  N. Seeman,et al.  Double Helix at Atomic Resolution , 1973, Nature.

[55]  M. Sundaralingam,et al.  C-H...O hydrogen bonding in biology. , 1997, Trends in biochemical sciences.

[56]  S. Neidle,et al.  Structure of a bis-amidinium derivative of hoechst 33258 complexed to dodecanucleotide d(CGCGAATTCGCG)2: the role of hydrogen bonding in minor groove drug-DNA recognition. , 1997, Nucleic acids research.

[57]  D. Goodsell,et al.  The molecular origin of DNA-drug specificity in netropsin and distamycin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[58]  V. Zhurkin,et al.  [Atom--atomic potential functions for conformational calculations of nucleic acids]. , 1980, Molekuliarnaia biologiia.

[59]  D C Rees,et al.  A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. , 1998, Science.

[60]  D S Goodsell,et al.  The structure of DAPI bound to DNA. , 1989, Journal of biomolecular structure & dynamics.

[61]  M. Manoharan,et al.  Detection of alkali metal ions in DNA crystals using state-of-the-art X-ray diffraction experiments. , 2001, Nucleic acids research.

[62]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[63]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[64]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[65]  Alexander Rich,et al.  Molecular Structure of the Netropsin-d(CGCGATATCGCG) Complex: DNA Conformation in an Alternating AT Segment , 1989 .

[66]  M. Bansal,et al.  Double helix conformation, groove dimensions and ligand binding potential of a G/C stretch in B‐DNA. , 1992, The EMBO journal.

[67]  S. Lowen The Biophysical Journal , 1960, Nature.

[68]  G. Shulman,et al.  Disruption of IRS-2 causes type 2 diabetes in mice , 1998, Nature.

[69]  W. Hunter,et al.  Do C-H...O hydrogen bonds contribute to the stability of nucleic acid base pairs? , 1995, Acta crystallographica. Section D, Biological crystallography.

[70]  S. Neidle,et al.  Variability in DNA minor groove width recognised by ligand binding: the crystal structure of a bis-benzimidazole compound bound to the DNA duplex d(CGCGAATTCGCG)2. , 1995, Nucleic acids research.

[71]  Auf der Heyde,et al.  Analyzing Chemical Data in More than Two Dimensions. A Tutorial on Factor and Cluster Analysis. , 1990 .

[72]  G. A. van der Marel,et al.  Structural consequences of a carcinogenic alkylation lesion on DNA: effect of O6-ethylguanine on the molecular structure of the d(CGC[e6G]AATTCGCG)-netropsin complex. , 1993, Biochemistry.

[73]  M. Murcko,et al.  GroupBuild: a fragment-based method for de novo drug design. , 1993, Journal of medicinal chemistry.

[74]  M Feig,et al.  Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. , 1999, Journal of molecular biology.

[75]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[76]  S. Neidle,et al.  Isohelicity and phasing in drug--DNA sequence recognition: crystal structure of a tris(benzimidazole)--oligonucleotide complex. , 1996, Biochemistry.

[77]  P. Dervan,et al.  The thermodynamics of polyamide-DNA recognition: hairpin polyamide binding in the minor groove of duplex DNA. , 1999, Biochemistry.

[78]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[79]  Stephen Neidle,et al.  Protein and drug interactions in the minor groove of DNA. , 2002, Nucleic acids research.

[80]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[81]  U Heinemann,et al.  Double helix conformation, groove dimensions and ligand binding potential of a G/C stretch in B-DNA. , 1992, The EMBO journal.

[82]  B. Ramakrishnan,et al.  SIDE BY SIDE BINDING OF TWO DISTAMYCIN A DRUGS IN THE MINOR GROOVE OF AN ALTERNATING B-DNA DUPLEX , 1995 .

[83]  Peter B. Dervan,et al.  Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands , 1998, Nature.

[84]  H. Margalit,et al.  A role for CH...O interactions in protein-DNA recognition. , 1998, Journal of molecular biology.

[85]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[86]  W. Olson,et al.  3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. , 2003, Nucleic acids research.

[87]  Wilma K Olson,et al.  Sequence-dependent motions of DNA: a normal mode analysis at the base-pair level. , 2002, Biophysical journal.

[88]  D. VanDerveer,et al.  Locating monovalent cations in the grooves of B-DNA. , 2001, Biochemistry.

[89]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[91]  G. N. Ramachandran,et al.  Stereochemistry of Nucleic Acids and Polynucleotides: I. Theoretical Determination of the Allowed Conformations of the Monomer Unit† , 1967 .

[92]  V. Zhurkin,et al.  B-DNA twisting correlates with base-pair morphology. , 1995, Journal of molecular biology.

[93]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[94]  S. Neidle,et al.  Designer DNA-binding drugs: the crystal structure of a meta-hydroxy analogue of Hoechst 33258 bound to d(CGCGAATTCGCG)2. , 1996, Nucleic acids research.