Misiurewicz points in one-dimensional quadratic maps

[1]  F. Montoya,et al.  On the calculation of Misiurewicz patterns in one-dimensional quadratic maps , 1996 .

[2]  F. Montoya,et al.  An approach to the ordering of one-dimensional quadratic maps , 1996 .

[3]  M. Lutzky Counting hyperbolic components of the Mandelbrot set , 1993 .

[4]  B. Hao,et al.  Chaotic systems: counting the number of periods , 1993 .

[5]  H. Capel,et al.  Windows in one-dimensional maps , 1991 .

[6]  Tan Lei,et al.  Similarity between the Mandelbrot set and Julia sets , 1990 .

[7]  P. Zweifel,et al.  Renormalization of binary trees derived from one-dimensional unimodal maps , 1990 .

[8]  Hao Bailin,et al.  Experimental study and characterization of chaos , 1990 .

[9]  M. Lutzky Counting stable cycles in unimodal iterations , 1988 .

[10]  H. Peitgen,et al.  The Beauty of Fractals , 1987, 1988.

[11]  Farmer Sensitive dependence on parameters in nonlinear dynamics. , 1985, Physical review letters.

[12]  Grebogi,et al.  Scaling behavior of windows in dissipative dynamical systems. , 1985, Physical review letters.

[13]  B. Mandelbrot On the quadratic mapping z→z2-μ for complex μ and z: The fractal structure of its M set, and scaling , 1983 .

[14]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[15]  M. Jakobson Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .

[16]  E. Lorenz NOISY PERIODICITY AND REVERSE BIFURCATION * , 1980 .

[17]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[18]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[19]  E. Gilbert,et al.  Symmetry types of periodic sequences , 1961 .

[20]  B. Hao,et al.  COUNTING THE NUMBER OF PERIODS IN ONE-DIMENSIONAL MAPS WITH MULTIPLE CRITICAL-POINTS , 1994 .