Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO3).

High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcoming the limitation of island-forming Volmer-Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (104 cm s-1), and low defect density of 1012 cm-3, which are comparable to those of CsPbBr3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. The high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.

[1]  Biwu Ma,et al.  Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence. , 2017, The journal of physical chemistry letters.

[2]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[3]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[4]  Z. Yin,et al.  Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes , 2017, Nature Communications.

[5]  H. Zeng,et al.  Ultralarge All‐Inorganic Perovskite Bulk Single Crystal for High‐Performance Visible–Infrared Dual‐Modal Photodetectors , 2017 .

[6]  Jinsong Huang,et al.  Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging , 2017, Nature Photonics.

[7]  Libai Huang,et al.  Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy , 2017, Science.

[8]  Wen-Guang Li,et al.  In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband‐Photodetectors , 2017, Advanced materials.

[9]  Barry P Rand,et al.  Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites , 2017, Nature Photonics.

[10]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[11]  J. Cho,et al.  Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals. , 2017, The journal of physical chemistry letters.

[12]  Shaohua Shen,et al.  Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2017, Nano letters.

[13]  Namchul Cho,et al.  Inorganic Lead Halide Perovskite Single Crystals: Phase‐Selective Low‐Temperature Growth, Carrier Transport Properties, and Self‐Powered Photodetection , 2017 .

[14]  Song Jin,et al.  Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites , 2017, Advanced materials.

[15]  Jin-Song Hu,et al.  General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. , 2016, Journal of the American Chemical Society.

[16]  M. Kovalenko,et al.  Solution-Grown CsPbBr3 Perovskite Single Crystals for Photon Detection , 2016, Chemistry of materials : a publication of the American Chemical Society.

[17]  Yiping Wang,et al.  Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. , 2016, Nano letters.

[18]  Song Jin,et al.  Screening in crystalline liquids protects energetic carriers in hybrid perovskites , 2016, Science.

[19]  Marcus L. Böhm,et al.  Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization , 2016 .

[20]  Sergii Yakunin,et al.  Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites , 2016, Nature Photonics.

[21]  Q. Yan,et al.  Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 10(8) cm(-3). , 2016, Journal of the American Chemical Society.

[22]  Xiaoyang Zhu,et al.  Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2016, ACS nano.

[23]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[24]  A. Alivisatos,et al.  Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions. , 2016, Journal of the American Chemical Society.

[25]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[26]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[27]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[28]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[29]  Xudong Wang,et al.  Inverted Wedding Cake Growth Operated by the Ehrlich-Schwoebel Barrier in Two-Dimensional Nanocrystal Evolution. , 2016, Angewandte Chemie.

[30]  Song Jin,et al.  Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. , 2016, Nano letters.

[31]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[32]  Uwe Fink,et al.  Properties Of Semiconductor Alloys Group Iv Iii V And Ii Vi Semiconductors , 2016 .

[33]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[34]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[35]  D. Tenne,et al.  Emergence of room-temperature ferroelectricity at reduced dimensions , 2015, Science.

[36]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[37]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[38]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[39]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[40]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[41]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[42]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[43]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[44]  Yang Liu,et al.  Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 , 2015 .

[45]  Li Ji,et al.  A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. , 2015, Nature nanotechnology.

[46]  E. Alarousu,et al.  Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells , 2014 .

[47]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[48]  Biao Wang,et al.  Nonvolatile Resistive Switching in Pt / LaAlO 3 / SrTiO 3 Heterostructures , 2013 .

[49]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[50]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[51]  D. R. Strachan,et al.  Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal annealing procedure , 2012, 1210.1860.

[52]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[53]  A. Verma,et al.  Lattice constant of cubic perovskites , 2009 .

[54]  Sadao Adachi,et al.  Properties of Semiconductor Alloys , 2009 .

[55]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[56]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[57]  D. Saylor,et al.  Surface Energy Anisotropy of SrTiO3 at 1400°C in Air , 2003 .

[58]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[59]  K. Reichelt,et al.  Nucleation and growth of thin films , 1988 .

[60]  Bernard S. Meyerson,et al.  Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition , 1986 .

[61]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[62]  C. A. Hoffman,et al.  Measurement of surface recombination velocity in semiconductors by diffraction from picosecond transient free‐carrier gratings , 1978 .