A conceptual model for constructing high‐resolution gauge‐satellite merged precipitation analyses

[1] A conceptual model has been developed to create high-resolution precipitation analyses over land by merging gauge-based analysis and CMORPH satellite estimates using data over China for a 5 month period from April to September 2007. A two-step strategy is adopted to remove the bias inherent in the CMORPH satellite precipitation estimates and to combine the bias-corrected satellite estimates with the gauge analysis. First, bias correction is performed for the CMORPH estimates by matching the probability density function (PDF) of the satellite data with that of the gauge analysis using colocated data pairs over a spatial domain of 5°lat/lon centering at the target grid box and over a time period of 30 days, ending at the target date. The spatial domain is expanded wherever necessary over gauge-sparse regions to ensure the collection of a sufficient number of gauge-satellite data pairs. The bias-corrected CMORPH precipitation estimates are then combined with the gauge analysis through the optimal interpolation (OI) technique, in which the bias-corrected CMORPH is used as the first guess while the gauge data are used as the observations to modify the first guess over regions with station coverage. Error statistics are computed for the input gauge and satellite data to maximize the performance of the high-resolution merged analysis of daily precipitation. Cross-validation tests and comparisons against independent gauge observations demonstrate feasibility and effectiveness of the conceptual algorithm in constructing merged precipitation analysis with substantially removed bias and significantly improved pattern agreements compared with those of the input gauge and satellite data.

[1]  T. Wigley,et al.  Global patterns of ENSO‐induced precipitation , 2000 .

[2]  V. Kousky,et al.  Assessing objective techniques for gauge‐based analyses of global daily precipitation , 2008 .

[3]  E. Anagnostou,et al.  Radar Rainfall Estimation for Ground Validation Studies of the Tropical Rainfall Measuring Mission , 1997 .

[4]  Z. Kawasaki,et al.  A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data , 2009 .

[5]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[6]  Hyun-Suk Kang,et al.  Multiscale Variability of the River Runoff System in China and Its Long-Term Link to Precipitation and Sea Surface Temperature , 2005 .

[7]  John E. Janowiak,et al.  A Global-Scale Examination of Monsoon-Related Precipitation , 2003 .

[8]  J. Roads,et al.  ECPC's Weekly to Seasonal Global Forecasts , 2001 .

[9]  P. Xie,et al.  Performance of high‐resolution satellite precipitation products over China , 2010 .

[10]  A. Gruber,et al.  Discrepancy between Gauges and Satellite Estimates of Rainfall in Equatorial Africa , 2000 .

[11]  R. Adler,et al.  Intercomparison of global precipitation products : The third Precipitation Intercomparison Project (PIP-3) , 2001 .

[12]  P. Xie,et al.  An Intercomparison of Gauge Observations and Satellite Estimates of Monthly Precipitation , 1995 .

[13]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[14]  G. Huffman,et al.  The TRMM Multi-Satellite Precipitation Analysis (TMPA) , 2010 .

[15]  Jay P. Breidenbach,et al.  Real-Time Correction of Spatially Nonuniform Bias in Radar Rainfall Data Using Rain Gauge Measurements , 2002 .

[16]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[17]  Kuolin Hsu,et al.  Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States , 2009 .

[18]  W. Krajewski,et al.  On the estimation of radar rainfall error variance , 1999 .

[19]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[20]  Richard W. Reynolds,et al.  A Real-Time Global Sea Surface Temperature Analysis , 1988 .

[21]  G. Villarini,et al.  Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges , 2008 .

[22]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[23]  Witold F. Krajewski,et al.  Evaluation of Biases of Satellite Rainfall Estimation Algorithms over the Continental United States , 2002 .

[24]  P. Xie,et al.  Kalman Filter–Based CMORPH , 2011 .

[25]  Phillip A. Arkin,et al.  Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions , 1996 .

[26]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[27]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[28]  Yang Hong,et al.  Flood and landslide applications of near real-time satellite rainfall products , 2007 .

[29]  Dong-Jun Seo,et al.  Real-time estimation of mean field bias in radar rainfall data , 1999 .

[30]  Kevin E. Trenberth,et al.  The Southern Oscillation Revisited: Sea Level Pressures, Surface Temperatures, and Precipitation , 2000 .

[31]  Soo-Hyun Yoo,et al.  An assessment of the surface climate in the NCEP climate forecast system reanalysis , 2011 .

[32]  Yudong Tian,et al.  Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications , 2007 .

[33]  Erich Franz Stocker,et al.  Analysis of TRMM 3-Hourly Multi-Satellite Precipitation Estimates Computed in Both Real and Post-Real Time , 2002 .

[34]  Witold F. Krajewski,et al.  Cokriging radar‐rainfall and rain gage data , 1987 .

[35]  Thomas L. Bell,et al.  Dependence of Satellite Sampling Error on Monthly Averaged Rain Rates:Comparison of Simple Models and Recent Studies , 2000 .

[36]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[37]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[38]  A. Gruber,et al.  Results from the GPCP Algorithm Intercomparison Programme , 1996 .

[39]  Huan Wu,et al.  Principal Modes of Rainfall–SST Variability of the Asian Summer Monsoon: A Reassessment of the Monsoon–ENSO Relationship , 2001 .

[40]  Rohit Gupta,et al.  A methodology for merging multisensor precipitation estimates based on expectation‐maximization and scale‐recursive estimation , 2006 .

[41]  Wanqiu Wang,et al.  A Multiplatform-Merged (MPM) SST Analysis , 2007 .

[42]  Witold F. Krajewski,et al.  RADAR-Rainfall Uncertainties , 2010 .

[43]  Dong-Jun Seo,et al.  Multisensor Precipitation Reanalysis , 2010 .

[44]  George J. Huffman,et al.  Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation , 1997 .

[45]  Jose Maliekal,et al.  The Uncertainty of Simple Spatial Averages Using Rain Gauge Networks , 1995 .

[46]  Norman C. Grody,et al.  Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS SSM/I algorithm: 1. Tropical oceanic rainfall , 1998 .

[47]  R. E. Livezey,et al.  A Comparison of the NCEP-NCAR Reanalysis Precipitation and the GPCP Rain Gauge-Satellite Combined Dataset with Observational Error Considerations , 1998 .

[48]  Jay P. Breidenbach,et al.  Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity , 2000 .

[49]  Y. Hong,et al.  Merging multiple precipitation sources for flash flood forecasting , 2007 .

[50]  Efi Foufoula-Georgiou,et al.  Space‐time rainfall organization and its role in validating quantitative precipitation forecasts , 2000 .

[51]  P. Xie,et al.  The Global Precipitation Climatology Project: First Algorithm Intercomparison Project , 1994 .

[52]  Thomas M. Smith,et al.  Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation , 1994 .

[53]  R. Daley Atmospheric Data Analysis , 1991 .

[54]  Soroosh Sorooshian,et al.  Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network , 2007 .

[55]  P. Xie,et al.  A Gauge-Based Analysis of Daily Precipitation over East Asia , 2007 .

[56]  Thomas M. Smith,et al.  Estimating Bias of Satellite-Based Precipitation Estimates , 2006 .

[57]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .