A SAT Approach for Finding Sup-Transition-Minors
暂无分享,去创建一个
[1] Mikolás Janota,et al. On the Quest for an Acyclic Graph , 2017, RCRA@AI*IA.
[2] Igor L. Markov,et al. Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).
[3] Cun-Quan Zhang,et al. Circuit Decompositions of Eulerian Graphs , 2000, J. Comb. Theory, Ser. B.
[4] C. Godsil,et al. Cycles in graphs , 1985 .
[5] G. Szekeres,et al. Polyhedral decompositions of cubic graphs , 1973, Bulletin of the Australian Mathematical Society.
[6] Brendan D. McKay,et al. Practical graph isomorphism, II , 2013, J. Symb. Comput..
[7] Melody Chan. A survey of the cycle double cover conjecture , 2009 .
[8] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus , 1983 .
[9] Günther R. Raidl,et al. A model for finding transition-minors , 2020, Discret. Appl. Math..
[10] C. Sims. Computational methods in the study of permutation groups , 1970 .
[11] Herbert Fleischner,et al. Eulersche linien und Kreisüberdeckungen, die vorgegebene durchgänge in den Kanten vermeiden , 1980, J. Comb. Theory, Ser. B.
[12] Marc E. Pfetsch,et al. Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem with Symmetry , 2011, CPAIOR.
[13] Eugene M. Luks,et al. Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[14] Cun-Quan Zhang,et al. Cycle covers (III) - Compatible circuit decomposition and K5-transition minor , 2019, J. Comb. Theory, Ser. B.