Hierarchical overdispersed Poisson model with macrolevel autocorrelation

Abstract We review Bayesian analysis of hierarchical non-standard Poisson regression models with an emphasis on microlevel heterogeneity and macrolevel autocorrelation. For the former case, we confirm that negative binomial regression usually accounts for microlevel heterogeneity (overdispersion) satisfactorily; for the latter case, we apply the simple first-order Markov transition model to conveniently capture the macrolevel autocorrelation which often arises from temporal and/or spatial count data, rather than attaching complex random effects directly to the regression parameters. Specifically, we extend the hierarchical (multilevel) Poisson model into negative binomial models with macrolevel autocorrelation using restricted gamma mixture with unit mean and Markov transition covariate created from preceding residuals. We prove a mild sufficient condition for posterior propriety under flat prior for the interesting fixed effects. Our methodology is implemented by analyzing the Baltic sea peracarids diurnal activity data published in the marine biology and ecology literature.

[1]  A. F. Smith,et al.  Conjugate likelihood distributions , 1993 .

[2]  Dipak K. Dey,et al.  Overdispersed Generalized Linear Models , 1997 .

[3]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[4]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[5]  A. Agresti Wiley Series in Probability and Statistics , 2002 .

[6]  G. King,et al.  Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator , 1989 .

[7]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[8]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[9]  Tian Zheng,et al.  How Many People Do You Know in Prison? , 2006 .

[10]  B. Mallick,et al.  Generalized Linear Models : A Bayesian Perspective , 2000 .

[11]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[12]  H. Goldstein Multilevel Statistical Models , 2006 .

[13]  Aki Vehtari Discussion to "Bayesian measures of model complexity and fit" by Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. , 2002 .

[14]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[15]  Andrew D. Martin Bayesian Inference for Heterogeneous Event Counts , 2003 .

[16]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[17]  Yingnian Wu,et al.  A random‐effects Markov transition model for Poisson‐distributed repeated measures with non‐ignorable missing values , 2007, Statistics in medicine.

[18]  C. Morris,et al.  Hierarchical Poisson Regression Modeling , 1997 .

[19]  B. Jansson,et al.  On the diurnal activity of some littoral peracarid crustaceans in the Baltic Sea , 1968 .

[20]  M. Daniels,et al.  Hierarchical Generalized Linear Models in the Analysis of Variations in Health Care Utilization , 1999 .

[21]  N. Breslow Extra‐Poisson Variation in Log‐Linear Models , 1984 .

[22]  Alan E. Gelfand,et al.  A Note on Overdispersed Exponential Families , 1990 .

[23]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.