Radio Propagation Models Based on Machine Learning Using Geometric Parameters for a Mixed City-River Path
暂无分享,去创建一个
Gervásio P. S. Cavalcante | Allan Dos S. Braga | Hugo A. O. Da Cruz | Leslye E. C. Eras | Jasmine P. L. Araújo | Miércio C. A. Neto | Diego K. N. Silva | G. Cavalcante | M. Neto | J. Araújo | H. A. O. Cruz | A. Braga | D. K. N. Silva
[1] Megha G. Mathpal. A Landmark Based Shortest Path Detection by Using A* and Haversine Formula , 2018 .
[2] Theodore S. Rappaport,et al. Wireless Communications: Principles and Practice (2nd Edition) by , 2012 .
[3] L. Correia,et al. A Propagation Model for Mixed Paths Using Dyadic Green's Functions: A Case Study Over the River for a City–River–Forest Path , 2018, IEEE Antennas and Wireless Propagation Letters.
[4] M. Hata,et al. Empirical formula for propagation loss in land mobile radio services , 1980, IEEE Transactions on Vehicular Technology.
[5] D. Barrick,et al. Estimation of HF radar mixed-media path loss using the millington method , 2015, 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM).
[6] G. Millington,et al. Ground-wave propagation over an inhomogeneous smooth earth , 1949 .
[7] Luís M. Correia,et al. A Radio Propagation Model for Mixed Paths in Amazon Environments for the UHF Band , 2018, Wirel. Commun. Mob. Comput..
[8] Kun Yang,et al. GRG-MAPE and PCC-MAPE Based on Uncertainty-Mathematical Theory for Path-Loss Model Selection , 2016, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).
[10] Jyh-Shing Roger Jang,et al. ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..
[11] J. C. Reyes-Guerrero,et al. 5.8 GHz propagation of low-height wireless links in sea port scenario , 2014 .
[12] Carlos T. Calafate,et al. Path Loss Predictions in the VHF and UHF Bands Within Urban Environments: Experimental Investigation of Empirical, Heuristics and Geospatial Models , 2019, IEEE Access.
[13] Diego K. N. da Silva,et al. Radio propagation for the Amazon Region considering the river level , 2019, 2019 Workshop on Communication Networks and Power Systems (WCNPS).
[14] S. Yoshida,et al. Propagation factors controlling mean field strength on urban streets , 1984 .
[15] G. P. S. Cavalcante,et al. Methodologies for path loss prediction in LTE-1.8 GHz networks using neuro-fuzzy and ANN , 2017, 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).
[16] S. Tabbane,et al. A UHF Path Loss Model Using Learning Machine for Heterogeneous Networks , 2017, IEEE Transactions on Antennas and Propagation.
[17] Nasir Faruk,et al. Determination of Neural Network Parameters for Path Loss Prediction in Very High Frequency Wireless Channel , 2019, IEEE Access.
[18] Tammam A. Benmus,et al. Neural network approach to model the propagation path loss for great Tripoli area at 900, 1800, and 2100 MHz bands , 2015, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).
[19] L. Sevgi,et al. FEM-Based Surface Wave Multimixed-Path Propagator and Path Loss Predictions , 2009, IEEE Antennas and Wireless Propagation Letters.
[20] F. A. Pontes,et al. Araraiana e Combu: um estudo comparativo de dois contextos ribeirinhos amazônicos , 2012 .
[21] C. H. Slump,et al. Mixed-path trans-horizon UHF measurements for P.1546 propagation model verification , 2011, 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications.
[22] Wei Chen,et al. Path Loss Channel Model for Inland River Radio Propagation at 1.4 GHz , 2017 .
[23] Juan Torres,et al. Improved ITU-R model for digital terrestrial television propagation path loss prediction , 2017 .