Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application

Abstract In this paper, we examine the maximum eigenvalue function of an even order real symmetric tensor. By using the variational analysis techniques, we first show that the maximum eigenvalue function is a continuous and convex function on the symmetric tensor space. In particular, we obtain the convex subdifferential formula for the maximum eigenvalue function. Next, for an mth-order n-dimensional symmetric tensor A , we show that the maximum eigenvalue function is always ρ th-order semismooth at A for some rational number ρ > 0 . In the special case when the geometric multiplicity is one, we show that ρ can be set as 1 ( 2 m - 1 ) n . Sufficient condition ensuring the strong semismoothness of the maximum eigenvalue function is also provided. As an application, we propose a generalized Newton method to solve the space tensor conic linear programming problem which arises in medical imaging area. Local convergence rate of this method is established by using the semismooth property of the maximum eigenvalue function.

[1]  P. T. Sơn The Lojasiewicz exponent of a continuous subanalytic function at an isolated zero , 2011 .

[2]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[3]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[4]  Defeng Sun,et al.  Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems , 2002, SIAM J. Numer. Anal..

[5]  Fei Wang,et al.  An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.

[6]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[7]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[11]  Guoyin Li On the Asymptotically Well Behaved Functions and Global Error Bound for Convex Polynomials , 2010, SIAM J. Optim..

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  Guoyin Li,et al.  Global error bounds for piecewise convex polynomials , 2013, Math. Program..

[14]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[15]  Kung-Ching Chang,et al.  On eigenvalue problems of real symmetric tensors , 2009 .

[16]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[17]  Boris S. Mordukhovich,et al.  Erratum to “Generalized Newton’s method based on graphical derivatives” [Nonlinear Anal. TMA 75 (2012) 1324–1340] , 2013 .

[18]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[19]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[20]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[21]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[22]  L. Lathauwer,et al.  From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .

[23]  Adrian S. Lewis,et al.  Tame functions are semismooth , 2008, Math. Program..

[24]  Guoyin Li,et al.  Error Bounds of Generalized D-Gap Functions for Nonsmooth and Nonmonotone Variational Inequality Problems , 2009, SIAM J. Optim..

[25]  P. Milman Subanalytic Geometry , 2000 .

[26]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[27]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[28]  Kok Lay Teo,et al.  Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..

[29]  Hung M. Phan,et al.  Generalized Newton’s method based on graphical derivatives , 2010, 1009.0410.

[30]  Adrian S. Lewis,et al.  THEINEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO , 2007 .

[31]  Guoyin Li,et al.  Error bound results for generalized D-gap functions of nonsmooth variational inequality problems , 2010, J. Comput. Appl. Math..

[32]  Yinyu Ye,et al.  Space tensor conic programming , 2013, Computational Optimization and Applications.

[33]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[34]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[35]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[36]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[37]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[38]  Anthony V. Fiacco Second Order Sufficient Conditions for Weak and Strict Constrained Minima , 1968 .