Stimulus-evoked and resting-state alpha oscillations show a linked dependence on patterned visual experience for development

[1]  B. Röder,et al.  Top-down modulation of visual cortical processing after transient congenital blindness , 2022, Neuropsychologia.

[2]  M. Vinck,et al.  Deficient Recurrent Cortical Processing in Congenital Deafness , 2022, Frontiers in Systems Neuroscience.

[3]  J. Ossandón,et al.  Steady state evoked potentials indicate changes in nonlinear neural mechanisms of vision in sight recovery individuals , 2021, Cortex.

[4]  Bradley Voytek,et al.  Methodological considerations for studying neural oscillations , 2021, The European journal of neuroscience.

[5]  M. Corbetta,et al.  The secret life of predictive brains: what’s spontaneous activity for? , 2021, Trends in Cognitive Sciences.

[6]  K. Hwang,et al.  The development of theta and alpha neural oscillations from ages 3 to 24 years , 2021, Developmental Cognitive Neuroscience.

[7]  Leila Reddy,et al.  Tentative fMRI signatures of perceptual echoes in early visual cortex , 2021, NeuroImage.

[8]  G. Fishell,et al.  Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells , 2021, Neuron.

[9]  B. Röder,et al.  Visual experience dependent plasticity in humans , 2020, Current Opinion in Neurobiology.

[10]  Kathy A. Low,et al.  The impact of 1/f activity and baseline correction on the results and interpretation of time-frequency analyses of EEG/MEG data: A cautionary tale , 2020, NeuroImage.

[11]  Bradley Voytek,et al.  Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life , 2020, Developmental Cognitive Neuroscience.

[12]  M. Vinck,et al.  Deafness Weakens Interareal Couplings in the Auditory Cortex , 2021, Frontiers in Neuroscience.

[13]  R. Knight,et al.  Parameterizing neural power spectra into periodic and aperiodic components , 2020, Nature Neuroscience.

[14]  Richard Gao,et al.  Parameterizing neural power spectra into periodic and aperiodic components , 2020, Nature Neuroscience.

[15]  N. Troje,et al.  Biological Action Identification Does Not Require Early Visual Input for Development , 2020, eNeuro.

[16]  Jason M. Scimeca,et al.  Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory , 2020, Current Biology.

[17]  Bradley Voytek,et al.  Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity , 2020, eNeuro.

[18]  Alexander A. Chubykin,et al.  Top-Down Feedback Controls the Cortical Representation of Illusory Contours in Mouse Primary Visual Cortex , 2019, The Journal of Neuroscience.

[19]  Alex I. Wiesman,et al.  Alpha Frequency Entrainment Reduces the Effect of Visual Distractors , 2019, Journal of Cognitive Neuroscience.

[20]  R. VanRullen,et al.  The Hidden Spatial Dimension of Alpha: 10-Hz Perceptual Echoes Propagate as Periodic Traveling Waves in the Human Brain , 2019, Cell reports.

[21]  Gregor Thut,et al.  Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum , 2018, The Journal of Neuroscience.

[22]  E. Halgren,et al.  The generation and propagation of the human alpha rhythm , 2017, Proceedings of the National Academy of Sciences.

[23]  A. Angelucci,et al.  Top-down feedback controls spatial summation and response amplitude in primate visual cortex , 2018, Nature Communications.

[24]  Nikola T. Markov,et al.  How Areal Specification Shapes the Local and Interareal Circuits in a Macaque Model of Congenital Blindness , 2018, Cerebral cortex.

[25]  Benedikt Zoefel,et al.  The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses , 2018, Front. Neurosci..

[26]  B. Röder,et al.  Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals. , 2018, Journal of vision.

[27]  Nikolaus F. Troje,et al.  Motion processing after sight restoration: No competition between visual recovery and auditory compensation , 2018, NeuroImage.

[28]  J. Obleser,et al.  States and traits of neural irregularity in the age-varying human brain , 2017, Scientific Reports.

[29]  J. Obleser,et al.  States and traits of neural irregularity in the age-varying human brain , 2017, Scientific Reports.

[30]  A. Kral,et al.  Higher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling , 2017, Hearing Research.

[31]  R. VanRullen Perceptual Cycles , 2016, Trends in Cognitive Sciences.

[32]  R. VanRullen,et al.  The hidden spatial dimension of alpha: occipital EEG channels encode contralateral and ipsilateral visual space at distinct phases of the alpha cycle , 2016 .

[33]  D. Elliott The good (logMAR), the bad (Snellen) and the ugly (BCVA, number of letters read) of visual acuity measurement , 2016, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[34]  M. Murray,et al.  Shaping Intrinsic Neural Oscillations with Periodic Stimulation , 2016, The Journal of Neuroscience.

[35]  N. Troje,et al.  Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans , 2016, Scientific Reports.

[36]  Jürgen Kurths,et al.  Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses , 2016, Front. Hum. Neurosci..

[37]  Adam Gazzaley,et al.  Age-Related Changes in 1/f Neural Electrophysiological Noise , 2015, The Journal of Neuroscience.

[38]  Ehud Zohary,et al.  The Limits of Shape Recognition following Late Emergence from Blindness , 2015, Current Biology.

[39]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[40]  Floris P. de Lange,et al.  Local Entrainment of Alpha Oscillations by Visual Stimuli Causes Cyclic Modulation of Perception , 2014, The Journal of Neuroscience.

[41]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[42]  D. Maurer,et al.  Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. , 2012, Developmental science.

[43]  Rufin VanRullen,et al.  Perceptual Echoes at 10 Hz in the Human Brain , 2012, Current Biology.

[44]  D. Maurer,et al.  Amblyopia: background to the special issue on stroke recovery. , 2012, Developmental psychobiology.

[45]  F. Hummel,et al.  Right Prefrontal TMS Disrupts Interregional Anticipatory EEG Alpha Activity during Shifting of Visuospatial Attention , 2011, Front. Psychology.

[46]  Ole Jensen,et al.  Alpha Oscillations Correlate with the Successful Inhibition of Unattended Stimuli , 2011, Journal of Cognitive Neuroscience.

[47]  Marcia Grabowecky,et al.  Differential Roles of Frequency-following and Frequency-doubling Visual Responses Revealed by Evoked Neural Harmonics , 2011, Journal of Cognitive Neuroscience.

[48]  P. Schyns,et al.  Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain , 2011, Front. Psychology.

[49]  Theodore P. Zanto,et al.  Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory , 2011, Nature Neuroscience.

[50]  J. Gross,et al.  Steady-State Visual Evoked Potentials Can Be Explained by Temporal Superposition of Transient Event-Related Responses , 2011, PloS one.

[51]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[52]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[53]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[54]  B. Röder,et al.  Early visual deprivation affects the development of face recognition and of audio-visual speech perception. , 2010, Restorative neurology and neuroscience.

[55]  A. Compston The Berger rhythm: potential changes from the occipital lobes in man. , 2010, Brain : a journal of neurology.

[56]  D. Stager,et al.  The critical period for surgical treatment of dense congenital bilateral cataracts. , 2009, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[57]  Barak A. Pearlmutter,et al.  Isolating endogenous visuo-spatial attentional effects using the novel visual-evoked spread spectrum analysis (VESPA) technique , 2007, The European journal of neuroscience.

[58]  Frank Sengpiel,et al.  The critical period , 2007, Current Biology.

[59]  F. Rösler,et al.  The development of visual feature binding processes after visual deprivation in early infancy , 2007, Vision Research.

[60]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[61]  D. Maurer,et al.  Sparing of sensitivity to biological motion after early visual deprivation , 2007 .

[62]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[63]  Michael Bach,et al.  The Freiburg Visual Acuity Test-Variability unchanged by post-hoc re-analysis , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[64]  F. Rösler,et al.  Reduced EEG alpha activity over parieto-occipital brain areas in congenitally blind adults , 2006, Clinical Neurophysiology.

[65]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[66]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[67]  N. Fox,et al.  Development of the EEG from 5 months to 4 years of age , 2002, Clinical Neurophysiology.

[68]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[69]  D. Maurer,et al.  Neuroperception: Early visual experience and face processing , 2001, Nature.

[70]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[71]  Bruce W. Dearstyne,et al.  Methodological considerations , 1989 .

[72]  David K. A. Barnes,et al.  correction: Early visual experience and face processing , 2001, Nature.

[73]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[74]  E. Basar,et al.  Alpha oscillations in brain functioning: an integrative theory. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[75]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[76]  E. Basar,et al.  EEG rhythmicities evoked by visual stimuli in three-year-old children. , 1994, The International journal of neuroscience.

[77]  A. Burkhalter Development of forward and feedback connections between areas V1 and V2 of human visual cortex. , 1993, Cerebral cortex.

[78]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  R. Homan,et al.  Cerebral location of international 10-20 system electrode placement. , 1987, Electroencephalography and clinical neurophysiology.

[80]  Club Jules Gonin,et al.  Graefe's archive for clinical and experimental ophthalmology , 1982 .

[81]  R. W. Doty Blindness and the electrical activity of the brain: Electroencephalographic studies of the effects of sensory impairment , 1975 .

[82]  L. Novikova Blindness and the electrical activity of the brain : electroencephalographic studies of the effects of sensory impairment , 1974 .

[83]  D G Childers,et al.  Alpha-like activity in vision. , 1971, Brain research.

[84]  L. H. Ehrlich Spontaneous absorption of congenital cataract following maternal rubella. , 1948, Archives of ophthalmology.

[85]  E. Adrian,et al.  THE BERGER RHYTHM: POTENTIAL CHANGES FROM THE OCCIPITAL LOBES IN MAN , 1934 .