Study of a New Chaotic Dynamical System and Its Usage in a Novel Pseudorandom Bit Generator

A new chaotic discrete dynamical system, built on trigonometric functions, is proposed. With intent to use this system within cryptographic applications, we proved with the aid of specific tools from chaos theory (e.g., Lyapunov exponent, attractor’s fractal dimension, and Kolmogorov-Smirnov test) and statistics (e.g., NIST suite of tests) that the newly proposed dynamical system has a chaotic behavior, for a large parameter’s value space, and very good statistical properties, respectively. Further, the proposed chaotic dynamical system is used, in conjunction with a binary operation, in the designing of a new pseudorandom bit generator (PRBG) model. The PRBG is subjected, by turns, to an assessment of statistical properties. Theoretical and practical arguments, rounded by good statistical results, confirm viability of the proposed chaotic dynamical system and newly designed PRBG, recommending them for usage within cryptographic applications.

[1]  Ljupco Kocarev,et al.  From chaotic maps to encryption schemes , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[2]  Kwok-Wo Wong,et al.  Enhanced Cryptography by Multiple Chaotic Dynamics , 2011 .

[3]  Ming Li Fractal Time Series—A Tutorial Review , 2010 .

[4]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[5]  Chaos-induced true randomness , 2002 .

[6]  William L. Ditto,et al.  Principles and applications of chaotic systems , 1995, CACM.

[7]  F. James,et al.  Chaos and randomness , 1995 .

[8]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[9]  Lai-Sang Young,et al.  Ergodic Theory of Chaotic Dynamical Systems , 1993 .

[10]  Zbigniew Kotulski,et al.  ON CONSTRUCTIVE APPROACH TO CHAOTIC PSEUDORANDOM NUMBER GENERATORS , 2000 .

[11]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[12]  L. M. Berliner,et al.  Statistics, Probability and Chaos , 1992 .

[13]  A Pseudorandom Bit Generator based on Chaotic Coupled Map Lattices , 2012 .

[14]  X. Mou,et al.  On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision , 2003 .

[15]  Zhi-Hong Guan,et al.  Cryptosystem using chaotic keys , 2005 .

[16]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[17]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[18]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[19]  Enrico Macii,et al.  Designing low-power circuits: practical recipes , 2001 .

[20]  Xuanqin Mou,et al.  Pseudo-random Bit Generator Based on Couple Chaotic Systems and Its Applications in Stream-Cipher Cryptography , 2001, INDOCRYPT.

[21]  M. Baptista Cryptography with chaos , 1998 .

[22]  L. T. DeCarlo On the meaning and use of kurtosis. , 1997 .

[23]  Rajesh G. Kavasseri,et al.  Pseudorandom Bit Generation Using Coupled Congruential Generators , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Xingyuan Wang,et al.  A DESIGN OF PSEUDO-RANDOM BIT GENERATOR BASED ON SINGLE CHAOTIC SYSTEM , 2012 .

[25]  Kwok-Wo Wong,et al.  True random number generator based on mouse movement and chaotic hash function , 2009, Inf. Sci..

[26]  Qing Tian,et al.  Theorem to Generate Independently and Uniformly Distributed Chaotic Key Stream via Topologically Conjugated Maps of Tent Map , 2012 .

[27]  Adriana Vlad,et al.  Generating random binary sequences using tent map , 2011, ISSCS 2011 - International Symposium on Signals, Circuits and Systems.

[28]  Gonzalo Alvarez,et al.  On the inadequacy of unimodal maps for cryptographic applications , 2010 .

[29]  A. Kanso,et al.  Logistic chaotic maps for binary numbers generations , 2009 .

[30]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[31]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[32]  Zhen Ji,et al.  Problems with a Probabilistic Encryption Scheme Based on Chaotic Systems , 2003, Int. J. Bifurc. Chaos.

[33]  Jorge Belaire-Franch,et al.  Recurrence Plots in Nonlinear Time Series Analysis: Free Software , 2002 .

[34]  Achim Zeileis,et al.  Strucchange: An R package for testing for structural change in linear regression models , 2002 .

[35]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[36]  David P. Doane,et al.  Measuring Skewness: A Forgotten Statistic? , 2011 .

[37]  Zonghua Liu Chaotic Time Series Analysis , 2010 .

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  Vinod Patidar,et al.  A Random Bit Generator Using Chaotic Maps , 2010, Int. J. Netw. Secur..

[40]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[41]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[42]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[43]  G. Álvarez,et al.  Cryptanalysis of an ergodic chaotic cipher , 2003 .

[44]  XiaoDi,et al.  True random number generator based on mouse movement and chaotic hash function , 2009 .

[45]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[46]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .

[47]  Gonzalo Álvarez,et al.  Trident, a New Pseudo Random Number Generator Based on Coupled Chaotic Maps , 2010, CISIS.

[48]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[49]  Jorge A. Baier,et al.  Exploiting N-Gram Analysis to Predict Operator Sequences , 2009, ICAPS.

[50]  Wang Xing-Yuan,et al.  A Novel True Random Number Generator Based on Mouse Movement and a One-Dimensional Chaotic Map , 2012 .

[51]  René Lozi,et al.  Emergence of Randomness from Chaos , 2012, Int. J. Bifurc. Chaos.

[52]  Yuan Zhou,et al.  Cryptanalysis and Improvement of a Block Cipher Based on Multiple Chaotic Systems , 2010 .

[53]  Gonzalo Alvarez,et al.  Cryptanalysis of a discrete-time synchronous chaotic encryption system , 2008 .

[54]  James Theiler,et al.  Estimating fractal dimension , 1990 .

[55]  Wallace Kit-Sang Tang,et al.  A New Chaotic System Based on Multiple-Angle sinusoidal Function: Design and Implementation , 2009, Int. J. Bifurc. Chaos.

[56]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[57]  Xiaomin Wang,et al.  Chaotic Keystream Generator Using Coupled NDFs with Parameter Perturbing , 2006, CANS.

[58]  李达,et al.  Security analysis of a multiple pseudorandom-bit generator based on a spatiotemporal chaotic map , 2010 .

[59]  Nong Ye,et al.  Recent Developments in Chaotic Time Series Analysis , 2003, Int. J. Bifurc. Chaos.

[60]  Jürgen Kurths,et al.  Recurrence plots for the analysis of complex systems , 2009 .

[61]  Feng Jiang,et al.  A New Series of Three-Dimensional Chaotic Systems with Cross-Product Nonlinearities and Their Switching , 2013, J. Appl. Math..