p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups.

[1]  K. Matsuzaki,et al.  Optical characterization of liposomes by right angle light scattering and turbidity measurement. , 2000, Biochimica et biophysica acta.

[2]  L. Pilarski,et al.  Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. , 2000, Biochimica et biophysica acta.

[3]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[4]  Maruyama,et al.  Possibility of active targeting to tumor tissues with liposomes. , 1999, Advanced drug delivery reviews.

[5]  A. Marangoni,et al.  Comparison of dynamic and integrated light-scattering techniques in the study of the interaction of Candida rugosa lipase with DPPC liposomes. , 1999, Biophysical chemistry.

[6]  G. Hortobagyi,et al.  Phase II trial of liposome-encapsulated doxorubicin, cyclophosphamide, and fluorouracil as first-line therapy in patients with metastatic breast cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  U. Bakowsky,et al.  Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. , 1999, International journal of pharmaceutics.

[8]  H. Monbouquette,et al.  Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. , 1998, Biophysical journal.

[9]  Hiroshi Maeda,et al.  Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues , 1998, Japanese journal of cancer research : Gann.

[10]  R. Jain,et al.  Delivery of Molecular and Cellular Medicine to Solid Tumors , 1997, Advanced drug delivery reviews.

[11]  V. Torchilin,et al.  Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. , 1996, Biochimica et biophysica acta.

[12]  S. Kaldor,et al.  Solid phase synthesis of hydantoins using a carbamate linker and a novel cyclization / cleavage step , 1996 .

[13]  E. Moase,et al.  Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. , 1995, Biochimica et biophysica acta.

[14]  R K Jain,et al.  Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. , 1995, Cancer research.

[15]  V. Torchilin,et al.  Which polymers can make nanoparticulate drug carriers long-circulating? , 1995 .

[16]  T. Allen,et al.  A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. , 1995, Biochimica et biophysica acta.

[17]  V. Torchilin,et al.  Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. , 1995, Immunology letters.

[18]  L. Huang,et al.  Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. , 1995, Biochimica et biophysica acta.

[19]  M. Woodle,et al.  New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. , 1994, Bioconjugate chemistry.

[20]  V. Torchilin,et al.  Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. , 1994, Biochimica et biophysica acta.

[21]  A A Bogdanov,et al.  Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. , 1994, Biochimica et biophysica acta.

[22]  H. Kikuchi,et al.  Phosphatidyl polyglycerols prolong liposome circulation in vivo , 1994 .

[23]  N. Van Rooijen,et al.  Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. , 1994, Biochimica et biophysica acta.

[24]  S. Zalipsky Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. , 1993, Bioconjugate chemistry.

[25]  G. Storm,et al.  Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. , 1993, Biochimica et biophysica acta.

[26]  G Blume,et al.  Molecular mechanism of the lipid vesicle longevity in vivo. , 1993, Biochimica et biophysica acta.

[27]  V. Torchilin,et al.  Targeted accumulation of polyethylene glycol‐coated immunoliposomes in infarcted rabbit myocardium , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  A. Gabizon,et al.  Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  V. Torchilin,et al.  Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. , 1991, Biochimica et biophysica acta.

[30]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[31]  M. Bally,et al.  Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. , 1989, Cancer research.

[32]  A. Gabizon,et al.  Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Gold,et al.  Acute myocardial infarct imaging with indium-111-labeled monoclonal antimyosin Fab. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[34]  K. Hubner,et al.  Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen. , 1987, Radiology.

[35]  V. Torchilin,et al.  A new hydrophobic anchor for the attachment of proteins to liposomal membranes , 1986, FEBS letters.

[36]  G. Gregoriadis,et al.  Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. , 1985, Biochimica et biophysica acta.

[37]  R. L. Childs,et al.  Radioactive labeling of antibody: a simple and efficient method. , 1983, Science.

[38]  V. Torchilin,et al.  Preservation of antimyosin antibody activity after covalent coupling to liposomes. , 1979, Biochemical and biophysical research communications.

[39]  J. Fendler,et al.  Liposomes as drug carriers. , 1977, Life sciences.

[40]  A. Habeeb,et al.  Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. , 1966, Analytical biochemistry.

[41]  M. Saraste,et al.  FEBS Lett , 2000 .

[42]  Torchilin Vp,et al.  A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. , 1997 .

[43]  M. Papisov,et al.  Why do Polyethylene Glycol-Coated Liposomes Circulate So Long?: Molecular Mechanism of Liposome Steric Protection with Polyethylene Glycol: Role of Polymer Chain Flexibility , 1994 .

[44]  B. A. Leonhardt,et al.  Proceedings of the 14th International Symposium on Controlled Release of Bioactive Materials , 1987 .

[45]  V. Torchilin Liposomes as targetable drug carriers. , 1985, Critical reviews in therapeutic drug carrier systems.

[46]  H. Gold,et al.  Monoclonal antibody to cardiac myosin: imaging of experimental myocardial infarction. , 1984, Hybridoma.

[47]  H. Enoch,et al.  Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. , 1979, Proceedings of the National Academy of Sciences of the United States of America.