Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals.

The synthesis of 5-(hydroxymethyl)furfural (HMF) in ionic liquids is a field that has grown rapidly in recent years. Unique dissolving properties for crude biomass in combination with a high selectivity for HMF formation from hexose sugars make ionic liquids attractive reaction media for the production of chemicals from renewable resources. A wide range of new catalytic systems that are unique for the transformation of glucose and fructose to HMF in ionic liquids has been found. However, literature examples of scale-up and process development are still scarce, and future research needs to complement the new chemistry with studies on larger scales in order to find economically and environmentally feasible processes for HMF production in ionic liquids. This Minireview surveys important progress made in catalyst development for the synthesis of HMF in ionic liquids, and proposes future research directions in process technology.

[1]  W. Haworth,et al.  183. The conversion of sucrose into furan compounds. Part I. 5-Hydroxymethylfurfuraldehyde and some derivatives , 1944 .

[2]  V. Grushin,et al.  One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. , 2003, Organic letters.

[3]  A. Amarasekara,et al.  Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. , 2008, Carbohydrate research.

[4]  A. Riisager,et al.  Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts , 2010 .

[5]  Xinhua Qi,et al.  Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. , 2010, ChemSusChem.

[6]  Regina Palkovits,et al.  Depolymerization of cellulose using solid catalysts in ionic liquids. , 2008, Angewandte Chemie.

[7]  A. Corma,et al.  One pot catalytic conversion of cellulose into biodegradable surfactants. , 2010, Chemical communications.

[8]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[9]  Richard M. Musau,et al.  The preparation of 5-hydroxymethyl-2-furaldehyde (HMF) from d-fructose in the presence of DMSO , 1987 .

[10]  R. P. Swatloski,et al.  Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. , 2006, Chemical communications.

[11]  R. Smith,et al.  Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids , 2010 .

[12]  Johnathan E. Holladay,et al.  Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural , 2007, Science.

[13]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[14]  James A. Dumesic,et al.  Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides , 2007 .

[15]  K. Qiao,et al.  1-Methylimidazolium Chlorosulfate ([HMIm]SO3Cl): A Novel Ionic Liquid with Dual Brønsted–Lewis Acidity , 2010 .

[16]  Xinhua Qi,et al.  Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids , 2009 .

[17]  C. Fayet,et al.  Nouvelle méthode de préparation du 5-hydroxyméthyl-2-furaldéhyde par action de sels d'ammonium ou d'immonium sur les mono-, oligo- et poly-saccharides. Accès direct aux 5-halogénométhyl-2-furaldéhydes , 1983 .

[18]  Y. Yi,et al.  Direct conversion of starch to hydroxymethylfurfural in the presence of an ionic liquid with metal chloride , 2010 .

[19]  Robin D. Rogers,et al.  Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride , 2007 .

[20]  B. Tollens,et al.  Untersuchungen über Kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsäure auf Zucker entstehende Säure (Levulinsäure) , 1875 .

[21]  Alexis T. Bell,et al.  A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids , 2010 .

[22]  H. Vogel,et al.  Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone , 2003 .

[23]  G. N. Richards,et al.  Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. , 1990, Carbohydrate research.

[24]  James A. Dumesic,et al.  Solvent Effects on Fructose Dehydration to 5-Hydroxymethylfurfural in Biphasic Systems Saturated with Inorganic Salts , 2009 .

[25]  Volkan Degirmenci,et al.  Glucose activation by transient Cr2+ dimers. , 2010, Angewandte Chemie.

[26]  B. Kuster,et al.  Analytical Procedures for Studying the Dehydration of D-Fructose☆ , 1977 .

[27]  B. Kuster,et al.  The influence of pH and weak-acid anions on the dehydration of d-fructose , 1977 .

[28]  Jean-Claude Martin,et al.  Dérivés de l'hydroxyméthyl‐5 furfural. I. Synthése de dérivés du di‐ et terfuranne , 1983 .

[29]  Ronald T. Raines,et al.  Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. , 2009, Journal of the American Chemical Society.

[30]  Z. Zhao,et al.  Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation , 2009 .

[31]  Christopher W. Jones,et al.  Ionic-Liquid-Phase Hydrolysis of Pine Wood , 2009 .

[32]  Huanling Song,et al.  Hydrolysis of cellulose by using catalytic amounts of FeCl₂ in ionic liquids. , 2010, ChemSusChem.

[33]  François Jérôme,et al.  Acid-catalyzed dehydration of fructose and inulin with glycerol or glycerol carbonate as renewably sourced co-solvent. , 2010, ChemSusChem.

[34]  Y. J. Kim,et al.  Acidity Tunable Ionic Liquids as Catalysts for Conversion of Agar into Mixed Sugars , 2010 .

[35]  D. Kralisch,et al.  Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures , 2009 .

[36]  M. Zheng,et al.  Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. , 2010, Carbohydrate research.

[37]  Yugen Zhang,et al.  Selective conversion of fructose to 5-hydroxymethylfurfural catalyzed by tungsten salts at low temperatures. , 2009, ChemSusChem.

[38]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[39]  K. Qiao,et al.  Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid , 2008 .

[40]  Yugen Zhang,et al.  Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation , 2010 .

[41]  Zongbao K. Zhao,et al.  Efficient Acid-Catalyzed Hydrolysis of Cellulose in Ionic Liquid , 2007 .

[42]  Masaru Watanabe,et al.  Glucose reactions with acid and base catalysts in hot compressed water at 473 K. , 2005, Carbohydrate research.

[43]  B. Han,et al.  Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids , 2009 .

[44]  Christoph Michels,et al.  Dissolution and forming of cellulose with ionic liquids , 2008 .

[45]  R. Smith,et al.  Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating , 2008 .

[46]  Y. Yi,et al.  Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid , 2010 .

[47]  Yugen Zhang,et al.  The effect of imidazolium ionic liquid on the dehydration of fructose to 5-hydroxymethylfurfural, and a room temperature catalytic system. , 2010, ChemSusChem.

[48]  Jinliang Song,et al.  Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid , 2009 .

[49]  J. Nef Dissoziationsvorgänge in der Zuckergruppe. Über das Verhalten der Zuckerarten gegen Ätzalkalien , 1910 .

[50]  H. Weingärtner,et al.  Understanding ionic liquids at the molecular level: facts, problems, and controversies. , 2008, Angewandte Chemie.

[51]  C. Moreau,et al.  Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids , 2003 .

[52]  Michiel Janssen,et al.  Room-temperature ionic liquids that dissolve carbohydrates in high concentrations , 2005 .

[53]  J. Ying,et al.  Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. , 2008, Angewandte Chemie.

[54]  Joseph B. Binder,et al.  Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural , 2010 .

[55]  Z. Zhao,et al.  Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. , 2010, Bioresource technology.

[56]  B. Kuster,et al.  The influence of the initial and catalyst concentrations on the dehydration of d-fructose , 1977 .

[57]  Christopher W. Jones,et al.  Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. , 2009, ChemSusChem.

[58]  Xianghong Qian,et al.  Ionic Liquid−Water Mixtures: Enhanced Kw for Efficient Cellulosic Biomass Conversion , 2010 .

[59]  R. P. Swatloski,et al.  Use of ionic liquids in the study of fruit ripening by high-resolution 13C NMR spectroscopy: 'green' solvents meet green bananas. , 2006, Chemical communications.

[60]  A. Fuchs Potentials for Non‐Food Utilization of Fructose and Inulin , 1987 .

[61]  Wenjing Fu,et al.  Process integration for the conversion of glucose to 2,5-furandicarboxylic acid , 2009 .

[62]  B. Kuster,et al.  The influence of water concentration on the dehydration of d-fructose , 1977 .

[63]  Honglei Fan,et al.  Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials , 2008 .

[64]  Atsushi Takagaki,et al.  A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. , 2009, Chemical communications.

[65]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[66]  H. Weingärtner Zum Verständnis ionischer Flüssigkeiten auf molekularer Ebene: Fakten, Probleme und Kontroversen , 2008 .

[67]  Regina Palkovits,et al.  Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? , 2010, ChemSusChem.

[68]  H. Teunissen Velocity measurements on the opening of the furane ring in hydroxy-methylfurfuraldehyde , 2010 .

[69]  John M Woodley,et al.  Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. , 2009, Carbohydrate research.

[70]  David W. Brown,et al.  Dehydration reactions of fructose in non‐aqueous media , 2007 .

[71]  C. Moreau,et al.  Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst , 2006 .

[72]  Martyn Pillinger,et al.  Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids , 2009 .

[73]  Yuriy Román‐Leshkov,et al.  Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates , 2007, Nature.

[74]  Yoshio Nakamura,et al.  The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde , 1980 .

[75]  Xinli Tong,et al.  Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Brønsted-acidic ionic liquids. , 2010, ChemSusChem.

[76]  D. D. De Vos,et al.  Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. , 2010, ChemSusChem.

[77]  Xinli Tong,et al.  An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids. , 2010, Carbohydrate research.

[78]  Masaru Watanabe,et al.  Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: Relationship between reactivity and acid–base property determined by TPD measurement , 2005 .

[79]  H. Weber,et al.  D-XYLOSE (D-GLUCOSE) ISOMERASE (EC 5.3.1.5): OBSERVATIONS AND COMMENTS CONCERNING STRUCTURAL REQUIREMENTS OF SUBSTRATES AS WELL AS MECHANISTIC FEATURES , 2001 .

[80]  F. Jérôme,et al.  Heterogeneously-catalyzed conversion of carbohydrates. , 2010, Topics in current chemistry.