Normalized Quadratic Systems of Consumer Demand Functions
暂无分享,去创建一个
[1] R. Shephard. Cost and production functions , 1953 .
[2] W. Diewert,et al. EXPENDITURE FUNCTIONS, LOCAL DUALITY, AND SECOND ORDER APPROXIMATIONS' , 1979 .
[3] J. Muellbauer,et al. Economics and consumer behavior , 1980 .
[4] Rene Roy,et al. La distribution du revenu entre les divers biens , 1947 .
[5] Charles Blackorby,et al. Money metric utility: A harmless normalization? , 1988 .
[6] P. Newman,et al. Some properties of concave functions , 1969 .
[7] W. Fenchel. Convex cones, sets, and functions , 1953 .
[8] D. Jorgenson,et al. Transcendental Logarithmic Utility Functions , 1975 .
[9] S. Afriat. THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .
[10] William A. Barnett,et al. The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .
[11] Israel Zang,et al. Nine kinds of quasiconcavity and concavity , 1981 .
[12] Walter Diewert,et al. Afriat and Revealed Preference Theory , 1973 .
[13] W. Schmidt,et al. Studies of a Class of Covariance Structure Models , 1973 .
[14] W. Diewert. Symmetry Conditions for Market Demand Functions , 1980 .
[15] W. M. Gorman. Community Preference Fields , 1953 .
[16] D. Commerce. Statistical abstract of the United States , 1978 .
[17] Dale W. Jorgenson,et al. The Transcendental Logarithmic Model of Aggregate Consumer Behavior , 1982 .
[18] P. Samuelson. Complementarity-An Essay on the 40th Anniversary of the Hicks-Allen Revolution in Demand Theory , 1974 .
[19] W. Diewert,et al. Flexible Functional Forms and Global Curvature Conditions , 1989 .
[20] C. Gouriéroux,et al. Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .
[21] J. Hicks,et al. Value and Capital , 2017 .
[22] William A. Barnett,et al. New Indices of Money Supply and the Flexible Laurent Demand System , 1983 .
[23] William A. Barnett,et al. The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms , 1985 .
[24] Ernst R. Berndt,et al. Flexible Functional Forms and Expenditure Distributions: An Application to Canadian Consumer Demand Functions , 1977 .
[25] J. Muellbauer,et al. An Almost Ideal Demand System , 1980 .
[26] R. Robert Russell,et al. Estimation of Demand Systems Generated by the Gorman Polar Form: A Generalization of the S-Branch Utility Tree , 1978 .