Normalized Quadratic Systems of Consumer Demand Functions

Empirically estimated demand systems frequently fail to satisfy the appropriate theoretical curvature conditions. We propose and estimate two demand systems for which these conditions can be imposed globally; the first is derived from a normalized quadratic reciprocal indirect utility function and the second is derived from a normalized quadratic expenditure function. The former is flexible if there are no restrictions on its free parameters, but loses flexibility if the curvature conditions need to be imposed. The latter is flexible, in the class of functions satisfying local money metric scaling, even if the curvature conditions need to be imposed.

[1]  R. Shephard Cost and production functions , 1953 .

[2]  W. Diewert,et al.  EXPENDITURE FUNCTIONS, LOCAL DUALITY, AND SECOND ORDER APPROXIMATIONS' , 1979 .

[3]  J. Muellbauer,et al.  Economics and consumer behavior , 1980 .

[4]  Rene Roy,et al.  La distribution du revenu entre les divers biens , 1947 .

[5]  Charles Blackorby,et al.  Money metric utility: A harmless normalization? , 1988 .

[6]  P. Newman,et al.  Some properties of concave functions , 1969 .

[7]  W. Fenchel Convex cones, sets, and functions , 1953 .

[8]  D. Jorgenson,et al.  Transcendental Logarithmic Utility Functions , 1975 .

[9]  S. Afriat THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA , 1967 .

[10]  William A. Barnett,et al.  The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .

[11]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[12]  Walter Diewert,et al.  Afriat and Revealed Preference Theory , 1973 .

[13]  W. Schmidt,et al.  Studies of a Class of Covariance Structure Models , 1973 .

[14]  W. Diewert Symmetry Conditions for Market Demand Functions , 1980 .

[15]  W. M. Gorman Community Preference Fields , 1953 .

[16]  D. Commerce Statistical abstract of the United States , 1978 .

[17]  Dale W. Jorgenson,et al.  The Transcendental Logarithmic Model of Aggregate Consumer Behavior , 1982 .

[18]  P. Samuelson Complementarity-An Essay on the 40th Anniversary of the Hicks-Allen Revolution in Demand Theory , 1974 .

[19]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[20]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[21]  J. Hicks,et al.  Value and Capital , 2017 .

[22]  William A. Barnett,et al.  New Indices of Money Supply and the Flexible Laurent Demand System , 1983 .

[23]  William A. Barnett,et al.  The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms , 1985 .

[24]  Ernst R. Berndt,et al.  Flexible Functional Forms and Expenditure Distributions: An Application to Canadian Consumer Demand Functions , 1977 .

[25]  J. Muellbauer,et al.  An Almost Ideal Demand System , 1980 .

[26]  R. Robert Russell,et al.  Estimation of Demand Systems Generated by the Gorman Polar Form: A Generalization of the S-Branch Utility Tree , 1978 .