Fourier Transform Light Scattering of Biological Structure and Dynamics

We review the principle and application of Fourier transform light scattering (FTLS), a new technique developed in our laboratory to study static and dynamic light scattering (DLS) from the biological tissues and live cells. The results demonstrate that FTLS has significant benefits over existing light scattering techniques in terms of sensitivity and resolution. We anticipate that FTLS will set the basis for disease diagnosis based on the intrinsic tissue optical properties and provide an efficient tool for quantifying cell structures and dynamics.

[1]  D A Weitz,et al.  Microscope-based static light-scattering instrument. , 2001, Optics letters.

[2]  Chau-Hwang Lee,et al.  Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy. , 2006, Optics letters.

[3]  D. Weitz,et al.  Elastic Behavior of Cross-Linked and Bundled Actin Networks , 2004, Science.

[4]  Huafeng Ding,et al.  Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850 nm. , 2007, Journal of biomedical optics.

[5]  Adam Wax,et al.  In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry. , 2007, Gastrointestinal endoscopy.

[6]  T. Foster,et al.  Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy. , 2007, Optics letters.

[7]  Bruno Berge,et al.  Dynamic light scattering as an investigating tool to study the global internal dynamics of a living cell nucleus , 2007 .

[8]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[9]  Thomas H Foster,et al.  Characterization of lysosomal contribution to whole-cell light scattering by organelle ablation. , 2007, Journal of biomedical optics.

[10]  F. C. MacKintosh,et al.  Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations , 1997 .

[11]  T. Mitchison,et al.  Actin-Based Cell Motility and Cell Locomotion , 1996, Cell.

[12]  P. Fournier,et al.  Microrheology of microtubule solutions and actin-microtubule composite networks. , 2009, Physical review letters.

[13]  G. Popescu Quantitative phase imaging of nanoscale cell structure and dynamics. , 2008, Methods in cell biology.

[14]  T C Lubensky,et al.  Microrheology, stress fluctuations, and active behavior of living cells. , 2003, Physical review letters.

[15]  Zhuo Wang,et al.  Quantitative phase imaging with broadband fields , 2010 .

[16]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[17]  P. Marquet,et al.  Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. , 2006, Optics express.

[18]  D A Weitz,et al.  Two-point microrheology of inhomogeneous soft materials. , 2000, Physical review letters.

[19]  S. Shapshay,et al.  Detection of preinvasive cancer cells , 2000, Nature.

[20]  Nir Gov,et al.  Nonequilibrium membrane fluctuations driven by active proteins. , 2006, The Journal of chemical physics.

[21]  B. Jähne,et al.  Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method. , 2000, Biophysical journal.

[22]  T. Pollard The cytoskeleton, cellular motility and the reductionist agenda , 2003, Nature.

[23]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[24]  Thomas D Pollard,et al.  Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. , 2005, Biophysical journal.

[25]  Julie A. Theriot,et al.  The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization , 1992, Nature.

[26]  Norman J. McCormick,et al.  Approximate two-parameter phase function for light scattering , 1980 .

[27]  Gaudenz Danuser,et al.  Fluctuations of intracellular forces during cell protrusion , 2008, Nature Cell Biology.

[28]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[29]  Zhuo Wang,et al.  Fourier transform light scattering of inhomogeneous and dynamic structures. , 2008, Physical review letters.

[30]  Tze-Wey Loong,et al.  Understanding sensitivity and specificity with the right side of the brain , 2003, BMJ : British Medical Journal.

[31]  T D Pollard,et al.  Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[33]  Huafeng Ding,et al.  Optical properties of tissues quantified by Fourier-transform light scattering. , 2009, Optics letters.

[34]  Irving Itzkan,et al.  Confocal light absorption and scattering spectroscopic microscopy. , 2007, Applied optics.

[35]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[36]  N. Gov,et al.  Membrane undulations driven by force fluctuations of active proteins. , 2004, Physical review letters.

[37]  P. Marchand,et al.  Elastic light scattering from single cells: orientational dynamics in optical trap. , 2004, Biophysical journal.

[38]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[39]  Kamran Badizadegan,et al.  Field-based angle-resolved light-scattering study of single live cells. , 2008, Optics letters.

[40]  J. Cooper,et al.  Control of actin assembly and disassembly at filament ends. , 2000, Current opinion in cell biology.

[41]  A. Caspi,et al.  Diffusion and directed motion in cellular transport. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  G. Popescu,et al.  Scattering of low coherence radiation and applications , 2005 .

[43]  I. Bigio,et al.  Elastic Scattering Spectroscopy as a Diagnostic Tool for Apoptosis in Cell Cultures , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  D. Weitz,et al.  Diffusing wave spectroscopy. , 1988, Physical review letters.

[45]  David D. Sampson,et al.  WIDE-FIELD MICROSCOPY VIA SPATIALLY RESOLVED FOURIER- HOLOGRAPHIC LIGHT SCATTERING ANGULAR SPECTROSCOPY , 2006 .

[46]  Gabriel Popescu,et al.  Microrheology of red blood cell membranes using dynamic scattering microscopy. , 2007, Optics express.

[47]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[48]  A. Dunn,et al.  Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. , 1999, Applied optics.

[49]  Denis Wirtz,et al.  Particle Tracking Microrheology of Complex Fluids , 1997 .

[50]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[51]  Changhuei Yang,et al.  Cellular organization and substructure measured using angle-resolved low-coherence interferometry. , 2002, Biophysical journal.

[52]  Julie A. Theriot,et al.  Actin microfilament dynamics in locomoting cells , 1991, Nature.

[53]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[54]  B. Wilson,et al.  Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. , 1989, Applied optics.

[55]  T. Pollard,et al.  Cellular Motility Driven by Assembly and Disassembly of Actin Filaments , 2003, Cell.

[56]  David A Weitz,et al.  Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. , 2007, Biophysical journal.

[57]  K. Nugent,et al.  Three-dimensional Imaging Using an Optical Microscope , 1990 .

[58]  J. Schmitt,et al.  Optical scattering properties of soft tissue: a discrete particle model. , 1998, Applied optics.

[59]  Judith R. Mourant,et al.  Light scattering from cells: the contribution of the nucleus and the effects of proliferative status , 2000, BiOS.

[60]  Levine,et al.  One- and two-particle microrheology , 2000, Physical review letters.

[61]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[62]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[63]  R. Preuss,et al.  Anomalous dynamics of cell migration , 2008, Proceedings of the National Academy of Sciences.

[64]  Angela A. Eick,et al.  Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. , 1998, Applied optics.

[65]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[66]  Gabriel Popescu,et al.  Tissue refractometry using Hilbert phase microscopy. , 2007, Optics letters.

[67]  D A Weitz,et al.  Microrheology of entangled F-actin solutions. , 2003, Physical review letters.

[68]  Gabriel Popescu,et al.  Coherence properties of red blood cell membrane motions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Timothy J Mitchison,et al.  Single-Molecule Speckle Analysis of Actin Filament Turnover in Lamellipodia , 2002, Science.