Regular Partitions of Hypergraphs: Counting Lemmas
暂无分享,去创建一个
[1] Vojtech Rödl,et al. On the Ramsey Number of Sparse 3-Graphs , 2008, Graphs Comb..
[2] Vojtech Rödl,et al. Every Monotone 3-Graph Property is Testable , 2005, SIAM J. Discret. Math..
[3] P. Valtr,et al. Topics in Discrete Mathematics , 2006 .
[4] V. Rödl,et al. Extremal Hypergraph Problems and the Regularity Method , 2006 .
[5] Daniela Kühn,et al. Embeddings and Ramsey numbers of sparse κ-uniform hypergraphs , 2006, Comb..
[6] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[7] Vojtech Rödl,et al. Every Monotone 3-Graph Property is Testable , 2007, SIAM J. Discret. Math..
[8] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[9] Vojtech Rödl,et al. Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.
[10] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[11] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[12] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[13] Vojtech Rödl,et al. Integer and fractional packings of hypergraphs , 2007, J. Comb. Theory, Ser. B.
[14] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[15] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[16] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[17] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.