Fatigue crack growth modeling considering a hybrid propagation strategy

[1]  D. M. Neto,et al.  Fatigue crack propagation analysis in 2024-T351 aluminium alloy using nonlinear parameters , 2021 .

[2]  V. Jayaram,et al.  Near-tip residual stress as an independent load interaction mechanism , 2021 .

[3]  D. M. Neto,et al.  FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids , 2021, Materials.

[4]  Wei Jiang,et al.  Efficient parameters identification of a modified GTN model of ductile fracture using machine learning , 2021 .

[5]  M. Sangid,et al.  Direct observations and characterization of crack closure during microstructurally small fatigue crack growth via in-situ high-energy X-ray characterization , 2020 .

[6]  D. M. Neto,et al.  Numerical Prediction of the Fatigue Crack Growth Rate in SLM Ti-6Al-4V Based on Crack Tip Plastic Strain , 2020, Metals.

[7]  D. M. Neto,et al.  Numerical simulation of fatigue crack growth based on accumulated plastic strain , 2020, Theoretical and Applied Fracture Mechanics.

[8]  M. N. James,et al.  Plastic CTOD as fatigue crack growth characterising parameter in 2024‐T3 and 7050‐T6 aluminium alloys using DIC , 2020 .

[9]  F. Antunes,et al.  Numerical Study on the Variability of Plastic CTOD , 2020, Materials.

[10]  T. Marrow,et al.  Fatigue crack closure: A myth or a misconception? , 2019, Fatigue & Fracture of Engineering Materials & Structures.

[11]  Ricardo Branco,et al.  Fatigue crack growth versus plastic CTOD in the 304L stainless steel , 2019, Engineering Fracture Mechanics.

[12]  R. Ritchie,et al.  On the theoretical modeling of fatigue crack growth , 2018, Journal of the Mechanics and Physics of Solids.

[13]  Ricardo Branco,et al.  Fatigue crack growth in the 2050-T8 aluminium alloy , 2018, International Journal of Fatigue.

[14]  Ping Hu,et al.  On the numerical implementation of a shear modified GTN damage model and its application to small punch test , 2018 .

[15]  S. Lynch Some fractographic contributions to understanding fatigue crack growth , 2017 .

[16]  L. P. Borrego,et al.  Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy , 2017 .

[17]  Andrei Kotousov,et al.  Three-Dimensional Computational Analysis of Stress State Transition in Through-Cracked Plates , 2016, Mathematics in Computer Science.

[18]  R. Branco,et al.  Finite element meshes for optimal modelling of plasticity induced crack closure , 2015 .

[19]  R. Branco,et al.  Effect of crack closure on non-linear crack tip parameters , 2015 .

[20]  A. G. Chegini,et al.  A numerical study of plasticity induced crack closure under plane strain conditions , 2015 .

[21]  J. Alves,et al.  Importance of the coupling between the sign of the mean stress and the third invariant on the rate of void growth and collapse in porous solids with a von Mises matrix , 2014 .

[22]  F. Pires,et al.  An extended GTN model for ductile fracture under high and low stress triaxiality , 2014 .

[23]  K. L. Nielsen Predicting failure response of spot welded joints using recent extensions to the Gurson model , 2010 .

[24]  Jacques Besson,et al.  Continuum Models of Ductile Fracture: A Review , 2010 .

[25]  Marco Antonio Meggiolaro,et al.  Fatigue crack growth predictions based on damage accumulation calculations ahead of the crack tip , 2009 .

[26]  L. P. Borrego,et al.  A numerical study of fatigue crack closure induced by plasticity , 2008 .

[27]  L. P. Borrego,et al.  Partial crack closure under block loading , 2008 .

[28]  Luís Menezes,et al.  Algorithms and Strategies for Treatment of Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing Process , 2008 .

[29]  Sylvie Pommier,et al.  Incremental model for fatigue crack growth based on a displacement partitioning hypothesis of mode I elastic–plastic displacement fields , 2007 .

[30]  V. Tvergaard Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening , 2007 .

[31]  Christer Persson,et al.  Experimental and numerical investigation of crack closure measurements with electrical potential drop technique , 2006 .

[32]  B. Svendsen,et al.  Simulation of Fatigue Crack Propagation in Ductile Metals by Blunting and Re-sharpening , 2005 .

[33]  Viggo Tvergaard,et al.  Overload effects in fatigue crack growth by crack-tip blunting , 2005 .

[34]  A. Steuwer,et al.  High-resolution strain mapping in bulk samples using full-profile analysis of energy-dispersive synchrotron X-ray diffraction data , 2004 .

[35]  V. Tvergaard On fatigue crack growth in ductile materials by crack–tip blunting , 2004 .

[36]  Christian Thaulow,et al.  A complete Gurson model approach for ductile fracture , 2000 .

[37]  A. Kfouri LIMITATIONS ON THE USE OF THE STRESS INTENSITY FACTOR, K, AS A FRACTURE PARAMETER IN THE FATIGUE PROPAGATION OF SHORT CRACKS , 1997 .

[38]  Wei Wang,et al.  Fatigue crack growth rate of metal by plastic energy damage accumulation theory , 1994 .

[39]  R Sunder,et al.  Cycle counting for fatigue crack growth analysis , 1984 .

[40]  R. Ritchie,et al.  A geometric model for fatigue crack closure induced by fracture surface roughness , 1982 .

[41]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[42]  Subra Suresh,et al.  ON THE INFLUENCE OF FATIGUE UNDERLOADS ON CYCLIC CRACK GROWTH AT LOW STRESS INTENSITIES , 1981 .

[43]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[44]  Subra Suresh,et al.  Near-Threshold Fatigue Crack Growth in 2 1/4 Cr-1Mo Pressure Vessel Steel in Air and Hydrogen , 1980 .

[45]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[46]  Karl-Heinz Schwalbe,et al.  Comparison of several fatigue crack propagation laws with experimental results , 1974 .

[47]  R. Pelloux,et al.  Crack extension by alternating shear , 1970 .

[48]  G. Smith,et al.  Crack propagation in high stress fatigue , 1962 .

[49]  P. Hutař,et al.  Finite element analysis of crack-tip opening displacement and plastic zones considering the cyclic material behaviour , 2019, Procedia Structural Integrity.

[50]  Liguo Zhao,et al.  Ratchetting strain as a driving force for fatigue crack growth , 2013 .

[51]  Philip J. Withers,et al.  Overload effects on fatigue crack-tip fields under plane stress conditions: surface and bulk analysis , 2013 .

[52]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[53]  Miaolin Feng,et al.  Modeling of Fatigue Crack Propagation , 2004 .

[54]  Luís Menezes,et al.  Three-dimensional numerical simulation of the deep-drawing process using solid finite elements , 2000 .

[55]  F. Leckie A course on damage mechanics , 1998 .

[56]  J. Lankford,et al.  Fatigue crack growth in metals and alloys: mechanisms and micromechanics , 1992 .

[57]  Daniel Kujawski,et al.  A fatigue crack growth model with load ratio effects , 1987 .

[58]  Grzegorz Glinka,et al.  A notch stress-strain analysis approach to fatigue crack growth , 1985 .

[59]  Daniel Kujawski,et al.  A fatigue crack propagation model , 1984 .

[60]  L. Rémy,et al.  Model of fatigue crack propagation by damage accumulation at the crack tip , 1983 .

[61]  S. R. Bodner,et al.  A description of fatigue crack growth in terms of plastik work , 1983 .

[62]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[63]  J. Griffiths,et al.  Influence of Mean Stress on Fatigue-Crack Propagation in a Ferritic Weld Metal , 1971 .