Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces

We propose a new class of models for image restoration and decomposition by functional minimization. Following ideas of Y. Meyer in a total variation minimization framework of L. Rudin, S. Osher, and E. Fatemi, our model decomposes a given (degraded or textured) image u0 into a sum u+v. Here u∈BV is a function of bounded variation (a cartoon component), while the noisy (or textured) component v is modeled by tempered distributions belonging to the negative Hilbert-Sobolev space H−s. The proposed models can be seen as generalizations of a model proposed by S. Osher, A. Solé, L. Vese and have been also motivated by D. Mumford and B. Gidas. We present existence, uniqueness and two characterizations of minimizers using duality and the notion of convex functions of measures with linear growth, following I. Ekeland and R. Temam, F. Demengel and R. Temam. We also give a numerical algorithm for solving the minimization problem, and we present numerical results of denoising, deblurring, and decompositions of both synthetic and real images.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[6]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[7]  L. Evans Measure theory and fine properties of functions , 1992 .

[8]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[9]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[10]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[11]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[12]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[13]  Yann Gousseau,et al.  Scales in Natural Images and a Consequence on their Bounded Variation Norm , 1999, Scale-Space.

[14]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[15]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[16]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[17]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[18]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[19]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[20]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[21]  Antonin Chambolle,et al.  Image Decomposition Application to SAR Images , 2003, Scale-Space.

[22]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[23]  Jean-Luc Starck,et al.  Image decomposition: separation of texture from piecewise smooth content , 2003, SPIE Optics + Photonics.

[24]  Ingrid Daubechies,et al.  Wavelet-based image decomposition by variational functionals , 2004, SPIE Optics East.

[25]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[26]  Guillermo Sapiro,et al.  Automatic image decomposition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[27]  Eitan Tadmor,et al.  A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..

[28]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[29]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[30]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[31]  Stacey Levine,et al.  An Adaptive Variational Model for Image Decomposition , 2005, EMMCVPR.

[32]  I. Daubechiesa,et al.  Variational image restoration by means of wavelets : Simultaneous decomposition , deblurring , and denoising , 2005 .

[33]  G. Aubert,et al.  Modeling Very Oscillating Signals. Application to Image Processing , 2005 .

[34]  Christophe Rosenberger,et al.  Texture Detection for Image Analysis , 2005, ICAPR.

[35]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[36]  Yehoshua Y. Zeevi,et al.  Estimation of the Optimal Variational Parameter via SNR Analysis , 2005, Scale-Space.

[37]  Frederic Truchetet,et al.  Wavelet Applications in Industrial Processing VI , 2007 .

[38]  Y. Meyer,et al.  Image decompositions using bounded variation and generalized homogeneous Besov spaces , 2007 .