Ensemble forecast of photovoltaic power with online CRPS learning

Abstract We provide probabilistic forecasts of photovoltaic (PV) production, for several PV plants located in France up to 6 days of lead time, with a 30-min timestep. First, we derive multiple forecasts from numerical weather predictions (ECMWF and Meteo France), including ensemble forecasts. Second, our parameter-free online learning technique generates a weighted combination of the production forecasts for each PV plant. The weights are computed sequentially before each forecast using only past information. Our strategy is to minimize the Continuous Ranked Probability Score (CRPS). We show that our technique provides forecast improvements for both deterministic and probabilistic evaluation tools.

[1]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[2]  Henrik Madsen,et al.  Online short-term solar power forecasting , 2009 .

[3]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[4]  Haipeng Luo,et al.  Achieving All with No Parameters: AdaNormalHedge , 2015, COLT.

[5]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[6]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[7]  Hans-Georg Beyer,et al.  Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Henrik Madsen,et al.  Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts , 2006 .

[9]  Daniel S. Wilks,et al.  Extending logistic regression to provide full‐probability‐distribution MOS forecasts , 2009 .

[10]  O. Perpiñán,et al.  PV power forecast using a nonparametric PV model , 2015 .

[11]  F. Anctil,et al.  Why Should Ensemble Spread Match the RMSE of the Ensemble Mean , 2014 .

[12]  J. M. Sloughter,et al.  Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging , 2010 .

[13]  Jing Huang,et al.  A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting , 2016 .

[14]  F. Atger,et al.  Estimation of the reliability of ensemble‐based probabilistic forecasts , 2004 .

[15]  T. Palmer,et al.  Stochastic parametrization and model uncertainty , 2009 .

[16]  Olivier Wintenberger,et al.  Optimal learning with Bernstein online aggregation , 2014, Machine Learning.

[17]  I. Jolliffe,et al.  Forecast verification : a practitioner's guide in atmospheric science , 2011 .

[18]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[19]  Leonard A. Smith,et al.  Scoring Probabilistic Forecasts: The Importance of Being Proper , 2007 .

[20]  Pierre Pinson,et al.  The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation , 2015 .

[21]  Vivien Mallet,et al.  Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation , 2010 .

[22]  Vivien Mallet,et al.  Ensemble forecast of solar radiation using TIGGE weather forecasts and HelioClim database , 2015 .

[23]  Ponnuthurai Nagaratnam Suganthan,et al.  Ensemble methods for wind and solar power forecasting—A state-of-the-art review , 2015 .

[24]  Paul Baudin Prévision séquentielle par agrégation d'ensemble : application à des prévisions météorologiques assorties d'incertitudes . (Sequential prediction with ensemble aggregation: application to meteorological prediction with uncertainties ) , 2015 .

[25]  Paul Baudin,et al.  Online learning with the CRPS for ensemble forecasting , 2016 .

[26]  R. Inman,et al.  Solar forecasting methods for renewable energy integration , 2013 .

[27]  Wouter M. Koolen,et al.  Second-order Quantile Methods for Experts and Combinatorial Games , 2015, COLT.

[28]  Nicolò Cesa-Bianchi,et al.  Potential-Based Algorithms in On-Line Prediction and Game Theory , 2003, Machine Learning.

[29]  Vivien Mallet,et al.  Ozone ensemble forecast with machine learning algorithms , 2009 .

[30]  L. D. Monache,et al.  An analog ensemble for short-term probabilistic solar power forecast , 2015 .

[31]  Alain Joly,et al.  PEARP, the Météo‐France short‐range ensemble prediction system , 2015 .

[32]  Leonard A. Smith,et al.  Increasing the Reliability of Reliability Diagrams , 2007 .

[33]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[34]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[35]  O. Talagrand,et al.  Evaluation of probabilistic prediction systems for a scalar variable , 2005 .

[36]  Gilles Stoltz,et al.  Forecasting electricity consumption by aggregating specialized experts , 2012, Machine Learning.

[37]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[38]  Christian Genest,et al.  Allocating the weights in the linear opinion pool , 1990 .

[39]  Joel L. Horowitz,et al.  Binary Response Models: Logits, Probits and Semiparametrics , 2001 .

[40]  P. Gaillard,et al.  Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting , 2016 .

[41]  Gilles Stoltz,et al.  A second-order bound with excess losses , 2014, COLT.

[42]  Olivier Pannekoucke,et al.  A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: Deterministic forecast of hourly production , 2014 .