Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis--a report from the kConFab Investigators.

PURPOSE Rare missense substitutions and in-frame deletions of BRCA1 and BRCA2 genes present a challenge for genetic counseling of individuals carrying such unclassified variants. We assessed the value of tumor immunohistochemical markers in conjunction with genetic and evolutionary approaches for investigating the clinical significance of unclassified variants. PATIENTS AND METHODS We studied 10 BRCA1 and 12 BRCA2 variants identified in Australian families with breast cancer. Analyses assumed a prior probability based on revised cross-species sequence alignment methods assessing amino acid evolutionary conservation and position, combined with likelihoods from data on co-occurrence with pathogenic mutations in the same gene, segregation analysis, and immunohistochemistry. We specifically explored the value of estrogen receptor, cytokeratin 5/6, and cytokeratin 14 as tumor markers of BRCA1 mutation status. RESULTS Posterior probabilities classified 72% of variants. BRCA1 variants IVS18+1 G>T (del exon 18) and 5632 T >A (V1838E) were classified as pathogenic, with >99% posterior probability of being deleterious, and tumor histopathology was particularly important for their classification. BRCA2 variant classification was improved over previous studies, largely by incorporating the prior probability of pathogenicity based on amino acid cross-species sequence alignments. CONCLUSION Variant classification was considerably improved by analysis of estrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumor expression, and use of updated methods estimating the clinical relevance of amino acid evolutionary conservation and position. These methodologies may assist genetic counseling of individuals with unclassified sequence variants.

[1]  L. Bégin,et al.  Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. , 2004, Journal of the National Cancer Institute.

[2]  L. Shulman,et al.  A Systematic Genetic Assessment of 1,433 Sequence Variants of Unknown Clinical Significance in the BRCA1 and BRCA2 Breast Cancer–Predisposition Genes , 2008 .

[3]  M. J. van de Vijver,et al.  The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  J. Hopper,et al.  Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. , 2003, American journal of human genetics.

[5]  J. Benítez,et al.  Classification of missense variants of unknown significance in BRCA1 based on clinical and tumor information , 2007, Human mutation.

[6]  B. Ward,et al.  Application of embryonic lethal or other obvious phenotypes to characterize the clinical significance of genetic variants found in trans with known deleterious mutations. , 2005, Cancer research.

[7]  M. Stratton,et al.  The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. , 2000, Cancer research.

[8]  Douglas F Easton,et al.  A full-likelihood method for the evaluation of causality of sequence variants from family data. , 2003, American journal of human genetics.

[9]  J. Glover,et al.  Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1 , 2001, Nature Structural Biology.

[10]  William D. Foulkes,et al.  Re: Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer , 2004 .

[11]  John A Tainer,et al.  Full‐length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2 , 2003, The EMBO journal.

[12]  M. Stratton,et al.  The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[13]  M. King,et al.  BRCA1 RING Domain Cancer-predisposing Mutations , 2001, The Journal of Biological Chemistry.

[14]  A. Zharkikh,et al.  Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral , 2005, Journal of Medical Genetics.

[15]  F. Couch,et al.  Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants? , 2007, Breast Cancer Research.

[16]  F. Couch,et al.  Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. , 2005, Cancer research.

[17]  L. Bégin,et al.  The Prognostic Implication of the Basal-Like (Cyclin Ehigh/p27low/p53+/Glomeruloid-Microvascular-Proliferation+) Phenotype of BRCA1-Related Breast Cancer , 2004, Cancer Research.

[18]  Julian Peto,et al.  Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.

[19]  A. Meindl,et al.  Comprehensive analysis of 989 patients with breast or ovarian cancer provides BRCA1 and BRCA2 mutation profiles and frequencies for the German population , 2002, International journal of cancer.

[20]  J. Benítez,et al.  Vimentin and laminin expression is associated with basal-like phenotype in both sporadic and BRCA1-associated breast carcinomas , 2006, Journal of Clinical Pathology.

[21]  M. Stratton,et al.  Screening for BRCA2 mutations in 81 Dutch breast–ovarian cancer families , 1999, British Journal of Cancer.

[22]  J. Hopper,et al.  Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. , 2006, Cancer research.

[23]  F. Couch,et al.  Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. , 2004, American journal of human genetics.

[24]  M. Stratton,et al.  Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. , 1998, Journal of the National Cancer Institute.

[25]  John L Hopper,et al.  Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource , 2006, Breast Cancer Research.