Rate of convergence in the central limit theorem for empirical processes

AbstractLet ℕn and $$\mathbb{B}_\mu $$ be an empirical process and a generalized Brownian bridge, respectively, indexed by a class ℱ of real measurable functions. From the central limit theorem for empirical processes it follows that for allr≥0. In this paper, assuming the class ℱ to be countably determined, under certain conditions we obtain an estimate for some constantC. Vapnik-Červonenkis class and the indicators of lower left orthants provide examples of classes ℱ considered here.

[1]  Vygantas Paulauskas,et al.  Approximation Theory in the Central Limit Theorem. Exact Results in Banach Spaces , 1989 .

[2]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[3]  M. Donsker Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems , 1952 .

[4]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[5]  K. Alexander,et al.  The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis Classes , 1987 .

[6]  Pascal Massart,et al.  STRONG APPROXIMATION FOR MULTIVARIATE EMPIRICAL AND RELATED PROCESSES, VIA KMT CONSTRUCTIONS , 1989 .

[7]  A. Račkauskas,et al.  Approximation Theory in the Central Limit Theorem , 1989 .

[8]  R. M. Dudley,et al.  Weak Convergence of Probabilities on Nonseparable Metric Spaces and Empirical Measures on Euclidean Spaces , 1966 .

[9]  József Beck,et al.  Lower bounds on the approximation of the multivariate empirical process , 1985 .

[10]  P. Massart Rates of convergence in the central limit theorem for empirical processes , 1986 .

[11]  X. Fernique,et al.  Régularité de processus gaussiens , 1971 .

[12]  V. Paulauskas Estimates of convergence rate in the central limit theorem in C(S) , 1976 .

[13]  R. Dudley A course on empirical processes , 1984 .

[14]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[15]  V. Bentkus,et al.  Smooth approximations of the norm and differentiable functions with bounded support in banach spacel∞k , 1990 .

[16]  E. Giné Bounds for the speed of convergence in the central limit theorem in C(S) , 1976 .

[17]  L. Shepp,et al.  Sample behavior of Gaussian processes , 1972 .

[18]  R. Dudley Universal Donsker Classes and Metric Entropy , 1987 .

[19]  V. S. Tsirel’son The Density of the Distribution of the Maximum of a Gaussian Process , 1976 .

[20]  V. Bentkus Differentiable functions defined in the spaces co and Rk , 1983 .

[21]  G. Tusnády,et al.  A remark on the approximation of the sample df in the multidimensional case , 1977 .

[22]  V. Dobric,et al.  The central limit theorem for stochastic processes II , 1988 .

[23]  V. Sazonov Normal Approximation: Some Recent Advances , 1981 .

[24]  M. Lifshits,et al.  Fibering method in some probabilistic problems , 1985 .

[25]  V. Paulauskas On the density of the norm of gaussian vector in banach spaces , 1983 .

[26]  V. Paulauskas,et al.  Rate of convergence in the central limit theorem in the space D[0, 1] , 1988 .

[27]  J. Hoffmann-jorgensen Sums of independent Banach space valued random variables , 1974 .

[28]  P. Gaenssler,et al.  Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables , 1979 .

[29]  Richard M. Dudley,et al.  Invariance principles for sums of Banach space valued random elements and empirical processes , 1983 .

[30]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[31]  E. Giné,et al.  Lectures on the central limit theorem for empirical processes , 1986 .

[32]  E. Giné,et al.  Convergence of moments and related functional in the general central limit theorem in banach spaces , 1979 .