The Transporter Classification Database

The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10 000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues.

[1]  Milton H Saier,et al.  BioV Suite – a collection of programs for the study of transport protein evolution , 2012, The FEBS journal.

[2]  Yves Quentin,et al.  ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes. , 2006, FEMS microbiology letters.

[3]  Marcin J. Skwark,et al.  SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology , 2008, Bioinform..

[4]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[5]  Tao Wang,et al.  Medicago truncatula transporter database: a comprehensive database resource for M. truncatula transporters , 2012, BMC Genomics.

[6]  Milton H. Saier,et al.  The IUBMB-endorsed transporter classification system , 2004, Methods in molecular biology.

[7]  Milton H Saier,et al.  Topological and phylogenetic analyses of bacterial holin families and superfamilies. , 2013, Biochimica et biophysica acta.

[8]  Milton H Saier,et al.  Tracing pathways of transport protein evolution , 2003, Molecular microbiology.

[9]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[10]  M H Saier,et al.  A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. , 2001, Journal of molecular microbiology and biotechnology.

[11]  Sanmay Das,et al.  Identifying Relevant Data for a Biological Database: Handcrafted Rules versus Machine Learning , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  C. Orengo,et al.  Protein Families: Relating Protein Sequence, Structure, and Function , 2014 .

[13]  Monica Riley,et al.  Gene fusions and gene duplications: relevance to genomic annotation and functional analysis , 2005, BMC Genomics.

[14]  Dorjee G. Tamang,et al.  Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators , 2010, BMC Research Notes.

[15]  M. O. Dayhoff,et al.  Establishing homologies in protein sequences. , 1983, Methods in enzymology.

[16]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[17]  M. Saier,et al.  Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. , 2010, Methods in molecular biology.

[18]  M. Saier,et al.  Functional Promiscuity of Homologues of the Bacterial ArsA ATPases , 2010, International journal of microbiology.

[19]  Dorjee G. Tamang,et al.  Comprehensive Analyses of Transport Proteins Encoded Within the Genome of “Aromatoleum aromaticum” Strain EbN1 , 2009, Journal of Membrane Biology.

[20]  M. Saier,et al.  Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. , 2012, Biochimica et biophysica acta.

[21]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[22]  Henry Chan,et al.  Pathways of transport protein evolution: recent advances , 2011, Biological chemistry.

[23]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[24]  Charles Elkan,et al.  Learning classifiers from only positive and unlabeled data , 2008, KDD.

[25]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..

[26]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[27]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[28]  M. Saier,et al.  Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid‐polyamine‐organocation superfamily , 2014, Proteins.

[29]  Yufeng Zhai,et al.  A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. , 2002, Journal of molecular microbiology and biotechnology.

[30]  Dorjee G. Tamang,et al.  Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins , 2010, The Journal of Membrane Biology.

[31]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[32]  Milton H. Saier,et al.  Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic , 2009, Journal of Membrane Biology.

[33]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[34]  Sanmay Das,et al.  Finding Transport Proteins in a General Protein Database , 2007, PKDD.

[35]  Y Zhai,et al.  A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. , 2001, Journal of molecular microbiology and biotechnology.

[36]  M. Saier,et al.  The Autoinducer-2 Exporter Superfamily , 2010, Journal of Molecular Microbiology and Biotechnology.

[37]  Yufeng Zhai,et al.  Protein-translocating outer membrane porins of Gram-negative bacteria. , 2002, Biochimica et biophysica acta.

[38]  I. Henderson,et al.  The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins , 2010, PloS one.

[39]  Pierre Baldi,et al.  ChemDB: a public database of small molecules and related chemoinformatics resources , 2005, Bioinform..

[40]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[41]  Peter D Karp,et al.  Browsing metabolic and regulatory networks with BioCyc. , 2012, Methods in molecular biology.

[42]  R F Doolittle,et al.  Convergent evolution: the need to be explicit. , 1994, Trends in biochemical sciences.

[43]  Ujjwal Kumar,et al.  Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control , 2011, Genome Biology.

[44]  Can V. Tran,et al.  Phylogeny as a guide to structure and function of membrane transport proteins (Review) , 2004, Molecular membrane biology.

[45]  Charles Elkan,et al.  The Transporter Classification Database: recent advances , 2008, Nucleic Acids Res..

[46]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[47]  Yves Moreau,et al.  YTPdb: a wiki database of yeast membrane transporters. , 2010, Biochimica et biophysica acta.

[48]  Milton H. Saier,et al.  Evolution of the Oligopeptide Transporter Family , 2011, The Journal of Membrane Biology.

[49]  M. Hediger,et al.  The ABCs of membrane transporters in health and disease (SLC series): Introduction , 2013, Molecular aspects of medicine.

[50]  A. Bairoch The ENZYME data bank. , 1993, Nucleic acids research.

[51]  M. Saier,et al.  Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes , 2009, Journal of Membrane Biology.

[52]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[53]  Milton H Saier,et al.  Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. , 2014, Biochimica et biophysica acta.

[54]  David S. Goodsell,et al.  The RCSB Protein Data Bank: new resources for research and education , 2012, Nucleic Acids Res..

[55]  Yufeng Zhai,et al.  A web-based Tree View (TV) program for the visualization of phylogenetic trees. , 2002, Journal of molecular microbiology and biotechnology.

[56]  Natalia N. Ivanova,et al.  A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans , 2008, Genome Biology.

[57]  M. Rask-Andersen,et al.  Trends in the exploitation of novel drug targets , 2011, Nature Reviews Drug Discovery.

[58]  Jindan Zhou,et al.  EcoGene 3.0 , 2012, Nucleic Acids Res..

[59]  M. Saier,et al.  The major facilitator superfamily (MFS) revisited , 2012, The FEBS journal.

[60]  Milton H. Saier,et al.  Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters , 2013, BMC Microbiology.

[61]  M. Saier,et al.  Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family , 2011, The Journal of Membrane Biology.

[62]  Jonathan S. Chen,et al.  The Amino Acid-Polyamine-Organocation Superfamily , 2012, Journal of Molecular Microbiology and Biotechnology.

[63]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[64]  S. White,et al.  Biophysical dissection of membrane proteins , 2009, Nature.

[65]  Jaehoon Cho,et al.  Phylogenetic Characterization of Transport Protein Superfamilies: Superiority of SuperfamilyTree Programs over Those Based on Multiple Alignments , 2012, Journal of Molecular Microbiology and Biotechnology.

[66]  J. Fierer Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae , 2008 .

[67]  David T. Jones,et al.  Improving the accuracy of transmembrane protein topology prediction using evolutionary information , 2007, Bioinform..

[68]  Robert Fredriksson,et al.  Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae , 2011, BMC Evolutionary Biology.

[69]  Erik L. Clarke,et al.  Deducing Transport Protein Evolution Based on Sequence, Structure, and Function , 2013 .

[70]  The UniProt Consortium,et al.  Update on activities at the Universal Protein Resource (UniProt) in 2013 , 2012, Nucleic Acids Res..

[71]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[72]  Charles Elkan,et al.  Learning to Find Relevant Biological Articles without Negative Training Examples , 2008, Australasian Conference on Artificial Intelligence.

[73]  M. Yen,et al.  Bioinformatic Analyses of Transmembrane Transport: Novel Software for Deducing Protein Phylogeny, Topology, and Evolution , 2009, Journal of Molecular Microbiology and Biotechnology.

[74]  W. Frommer,et al.  ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins1 , 2003, Plant Physiology.

[75]  Sumit Arora,et al.  The transporter–opsin–G protein‐coupled receptor (TOG) superfamily , 2013, The FEBS journal.

[76]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[77]  D. Pollock,et al.  Genomic biodiversity, phylogenetics and coevolution in proteins. , 2002, Applied bioinformatics.

[78]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[79]  M. Saier,et al.  The Transporter Classification (TC) System, 2002 , 2002, Critical reviews in biochemistry and molecular biology.

[80]  Bacterial Adaptor Membrane Fusion Proteins and the Structurally Dissimilar Outer Membrane Auxiliary Proteins Have Exchanged Central Domains in α-Proteobacteria , 2010, International journal of microbiology.

[81]  Vasilis Vasiliou,et al.  Human ATP-binding cassette (ABC) transporter family , 2009, Human Genomics.

[82]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[83]  E. Dassa,et al.  Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. , 2002, Current protein & peptide science.

[84]  Henry Chan,et al.  The P-Type ATPase Superfamily , 2010, Journal of Molecular Microbiology and Biotechnology.

[85]  W. C. Barker Of URFs and ORFs: A primer on how to analyze derived amino acid sequences: Russell F. Doolittle, University Science Books, Mill Valley, CA. Paperback. Under $15 , 1987 .

[86]  W. Pearson Empirical statistical estimates for sequence similarity searches. , 1998, Journal of molecular biology.