A Tabu Search Based Approach for Solving a Class of Bilevel Programming Problems in Chemical Engineering

In this paper an approach based on the tabu search paradigm to tackle the bilevel programming problems is presented. The algorithm has been tested for a number of benchmark problems and the results obtained show superiority of the approach over the conventional methods in solving such problems.

[1]  V. Jayaraman,et al.  An algorithm for solving bidisperse catalyst pellet problems , 1993 .

[2]  Paul H. Calamai,et al.  Generating Linear and Linear-Quadratic Bilevel Programming Problems , 1993, SIAM J. Sci. Comput..

[3]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[4]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[5]  Manuel Laguna,et al.  Applying Tabu Search To The Two-Dimensional Ising Spin Glass , 1995 .

[6]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[7]  Roberto Battiti,et al.  The continuous reactive tabu search: Blending combinatorial optimization and stochastic search for global optimization , 1996, Ann. Oper. Res..

[8]  Hai Yang,et al.  Traffic Assignment and Traffic Control in General Freeway-arterial Corridor Systems , 1994 .

[9]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[10]  J. P. Kelly,et al.  Tabu search for the multilevel generalized assignment problem , 1995 .

[11]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[12]  Jonathan F. Bard,et al.  An algorithm for the mixed-integer nonlinear bilevel programming problem , 1992, Ann. Oper. Res..

[13]  A. Ciric,et al.  A dual temperature simulated annealing approach for solving bilevel programming problems , 1998 .

[14]  Patrick Siarry,et al.  Tabu Search applied to global optimization , 2000, Eur. J. Oper. Res..

[15]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[16]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[17]  V. K. Jayaraman,et al.  Simple method for solution of a class of reaction‐diffusion problems , 1983 .

[18]  Jonathan F. Bard,et al.  Algorithms for nonlinear bilevel mathematical programs , 1991, IEEE Trans. Syst. Man Cybern..

[19]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[20]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[21]  Timur Doǧu,et al.  Effectiveness of bidisperse catalysts , 1979 .

[22]  P. Siarry,et al.  FITTING OF TABU SEARCH TO OPTIMIZE FUNCTIONS OF CONTINUOUS VARIABLES , 1997 .

[23]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[24]  G. Theraulaz,et al.  Inspiration for optimization from social insect behaviour , 2000, Nature.

[25]  Arthur W. Westerberg,et al.  Optimization for design problems having more than one objective , 1983 .

[26]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[27]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[28]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[29]  Ue-Pyng Wen,et al.  Linear Bi-level Programming Problems — A Review , 1991 .

[30]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[31]  Fred W. Glover,et al.  Intelligent scheduling with tabu search: An application to jobs with linear delay penalties and sequence-dependent setup costs and times , 1993, Applied Intelligence.

[32]  Fred W. Glover,et al.  A study of diversification strategies for the quadratic assignment problem , 1994, Comput. Oper. Res..

[33]  J. Bard Some properties of the bilevel programming problem , 1991 .

[34]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..